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Collective Frequencies and Metastability in Networks of Limit-Cycle Oscillators with Time Delay
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We analyze the dynamic behavior of large two-dimensional systems of limit-cycle oscillators with ran-
dom intrinsic frequencies that interact via time-delayed nearest-neighbor coupling. We find that even
small delay times lead to a novel form of frequency depression where the system decays to stable states
which oscillate at a delay and interaction-dependent reduced collective frequency. For greater delay or
tighter coupling between oscillators we find metastable synchronized states that we describe analytically
and numerically.

PACS numbers: 05.45.+b, 87. l0.+e

Arrays of coupled limit-cycle oscillators are of funda-
mental interest in physics [1-3], biology [4-8], and en-
gineering [9]. In each of these cases, finite transmission
velocities or discrete events, such as the propagation of
information through a network node or "synapse, " intro-
duce delays in the system that are not commonly incor-
porated into the picture of interacting oscillators. The
recognition that delay increases the dimensionality, and
hence the complexity, of the system has focused efforts on
those domains where delay is not a major factor, or where
the system becomes chaotic [10-14]. The ubiquitous na-
ture of time delay leads naturally to the subject of this
Letter: an exploration of the dynamic behavior and
metastable states of coupled time-delayed oscillators.

We study a system of N coupled oscillators with phases
p; C [0,2tr]. The Langevin dynamics of the system are
described by N differential-difference equations:

dp;(t)
=coo+Kgsin[&J (t —z ) —p;(t)]+ rl;(t),

J

where K is the coupling constant, r is the delay, and coo is
the intrinsic frequency of the oscillators. The sum runs
over all nearest neighbors of oscillator i. The tempera-
ture T is incorporated in the usual way by the Gaussian
noise term rt; (t):

(rt;(t)) =0,
(rt;(t)rt, (t')) =2T8(i,j )b(t t') . —

We simulated this system for N =16384 (128X128)
oscillators on the CM-2 Connection Machine, using a
two-dimensional square lattice with periodic boundary
conditions. We found the surprising result that even at
low temperatures (T«coo) the system exhibits a strong
"frequency suppression': With increasing coupling and
delay the mean frequency, 0 =(I/N)P;(P;) [the angular
brackets denote the average over the random noise rl;(t)],
of the system is drastically reduced as shown in Fig. 1 (as
a function of z). We obtain a similar frequency depres-
sion if instead of a single frequency mo the oscillators
have different intrinsic frequencies with a distribution
that has a mean coo and a width comparable to coo (data

not shown).
In order to understand this effect we consider a situa-

tion where all angles change with the same frequency 0
without IIuctuation (i.e., p; = tl t+ a) and obtain for
T =0 from Eq. (1) the result

0 = too —Kn sin (0 z ),
where n is the number of neighbors (four in the case of a
square lattice with nearest-neighbor interaction). This
equation has multiple solutions. In Fig. 1 we plot the
lowest stable frequency 0;„=co/o( I+Knz) and obtain
excellent agreement with our simulations.

It is to be expected that the approximation of common
frequency and phase of all oscillators is less justified for
intermediate values of the coupling K than in the case of
the strong coupling considered here, and that many-body
effects will lead to more complicated phenomena. For the
case we are interested in (strong coupling and small de-

lays), however, the simple theory is obviously sufficient.
Two questions arise: (i) Why do we see only the small-
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FIG. I. Frequency suppression as a function of time delay r
(in units of 2too ) for two coupled oscillators (diamonds), for a
two-dimensional array of 16384 oscillators (crosses), and the
prediction from Eq. (2) (line). The average frequency Q is
plotted as a fraction of the intrinsic frequency coo. The temper-
ature is T = 10 K.
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FIG. 2. Average frequency 0 for a system with initial condi-
tions given in Eq. (3), as a function of time (in units of 2roo )
for different temperatures (T=4x10 K, diamonds; T=6
x IO K, squares; T=g&&10 K, crosses). At t =2.4, the
system with T =6x 10 K makes a transition from the meta-
stable state to the stable state. At this temperature, the phase
of one randomly chosen oscillator [horizontal coordinate 52,
vertical coordinate 76, (0,0) being in the lower left corner] is
shown in the inset. For small t, the oscillator is part of the
metastable domain and moves correspondingly fast. At t —3.1,
the spreading boundary of the defect attains the oscillator and
its motion is slowed down (and its direction reversed) to the
much lower frequency of the stable state.

ize the sine function in the interaction term of Eq. (I ).
The linearized equation p; =con —K+iltt;(t) —Pi(t —r)]
can be solved by Fourier transformation which 1eads to
the averaged frequency (p) =run(1+ Knr )

We have still to answer the question of why the small-
est solution of Eq. (2) is globally stable and the higher
solutions are not. The existence of metastable states
which become destabilized by spatial phase fluctuations
can be understood in the following model of two limit-
cycle oscillators with phases gati(t), p&(t), which are cou-
pled with time delay:

jl =roi —Ksin(yl —X@2),

jz =ru2 —Ksin(yp —Zyl),

Wi, ~ =Pi, z ~Pi, z.

Since Eqs. (4)-(6) can be solved as

(t) = fodr e 'y|2(t —r )
0 2 —

A, rJo dt's

(4)

(5)

(6)

(7)

we see that the variables Rye q(t) are the average over the
delayed phase variables pl z(t —z) with an exponential
distribution of delays [15]. This modification of the origi-
nal problem where we had only a single delay time allows
us to visualize the existence and stability of metastable
states in a simple two-dimensional potential.

For x=(xl, x2) with xl =(pi+kyl ttz ky2)/2 and
xz =(Pi —

A, yl+Pz —ky2)/2, Eqs. (4)-(6) reduce to

est solution of Eq. (2) and (ii) does the system ever go
into a state corresponding to other solutions? We shall
see that the answers to both questions are intimately con-
nected.

In order to answer the second question, we start the
system from a spatially homogeneous state with

(3)

x = —VV(x),

/if i jlfp =2x i 2X(llfl l//2),

p]+ +2 2X2 s

with a potential

V(x) x ] tI — Kcosx 1 cosxp x2 0++

(10)

with —r ~ l ~ 0 and K =50eo, eo =0.5. Figure 2 shows
that for small temperatures (T=6x10 K) the system
stays for some time in a metastable state with a frequen-
cy 0 .„„,which is the largest stable solution of Eq. (2),
and then decays to a state with the lowest possible com-
mon frequency 0;„,which is again approximately given

by Eq. (2). The color plates (Fig. 3) show that this insta-
bility is due to a spatial inhomogeneity in the phase dis-
tribution of the system which is caused by a thermal fluc-
tuation and which increases in the course of time. Figure
2 shows that for higher temperatures the probability of
phase slips increases, leading to a faster decay into a state
with the lowest possible frequency, while for lower tem-
peratures the occurrence of a spatial inhomogeneity is
less probable and the system stays longer in the metasta-
ble state.

Numerical experiments indicate that the stable state is
characterized by a phase distribution which varies slowly
in space [see, e.g. , Fig. 3(d)]. In this case, we can linear-

shown in Fig. 4 for II+ =(roi ~ ruz)/2. If the system is

trapped in a local minimum (xi,xz ) of V(x), the phase
difference between the oscillators becomes pl (t) —Pq(t)
=x*i, and the common frequency becomes pl =&2 =xq k

[16]. Therefore the axes xtit, xz in Fig. 4 denote the phase
diflerence and the common frequency of the delay cou-
pled oscillators. For a spatially homogeneous situation

(xi =0), the potential is a superposition of a shifted para-
bola with a periodic function and therefore has local
minima whose depths increase with coupling K and
eAective delay time ro=k ' [17]. In the presence of
spatial inhomogeneities of the phases, i.e. , for pi

—&2&0,
the local minima become smaller and vanish for pi

—
pq

=tru/2 (u = +' I, ~ 3, . . . ). Spatial inhomogeneities
therefore allow the system to reach the state with the
lowest frequency at the bottom of the potential without
climbing over local maxima. This agrees qualitatively
with our numerical observations for the many-oscillator
system.
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FIG. 3. Phases of 128X128 oscillators, using a color code where d
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