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Collective Excitations and Spectral Function in the Fermi-Liquid State of the t-J Model
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We analyze the nature of the single-particle excitations and the collective modes in the nonmagnetic
phase of a generalized t Jmod-el to next to leading order in 1/N. We discuss the essential features of the
spectral function of the t-J model and we evaluate it numerically for values of the parameters t, J, and of
the doping level relevant to the copper-oxide planes.

PACS numbers: 71.28.+d, 74.65.+n, 79.60.—i

The characteristics of the one-particle Green's func-
tions and the nature of the collective excitations in fer-
mion systems where the local correlations are strong is a
long-standing problem in condens'ed-matter physics. In
the context of the simple, Hubbard-like models, two very
important ideas, the existence of two broad incoherent
peaks in the spectral function now known as Hubbard
bands and the existence of a Luttinger Fermi surface,
were advanced by Hubbard [1] and by Brinkman and
Rice [2], respectively. Hubbard and followers used
equation-of-motion schemes, which produce incoherent
features in the spectral function as a result of the strong
correlation. Unfortunately, these schemes
quasiparticles and violate Luttinger's the
proaches based on the Brin kman-Rice-
wave functions are consistent with a Fer
strongly renormalized quasiparticle excita
it is very dificult to construct in these sc
mate variational excited states to calcula
function and to recover the incoherent pa
trum.

In this Letter we calculate for the first
particle spectral function in a generalized t
ed systematically to next to leading order
pansion. This approach can be pursued v

cally, and produces both Hubbard-like a
like features in the spectral function. W
gross features of the Hubbard valence ban

interpretation in terms of a superposition o
and a collective mode describing the coh
tion of holes in a strongly correlated syste
tive mode reduces to the zero-sound mo
wavelength limit. The exchange interactio

spins do not affect the gross features of the spectral densi-

ty but have a dramatic effect at low frequency. They pro-
duce very low-lying collective modes describing the prop-
agation of staggered spin chirality and give rise to devia-
tions from Fermi-liquid behavior at intermediate-energy
scales. Our findings are in good agreement with recent
numerical calculations [5,6].

We consider the SU(N) generalization of the t-J mod-
el [7] defined by
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where q = (q,i co„). The fields A, and r are the usual slave-boson fields which couple to the quasiparticle density and ener-
gy density operators (p, C). The phase and amplitude (A„,R„) of the bond variables couple to the current and stress
operators (J" 7")

(pq, @q,tq, 7q") =g 1, (ek, +ek ), ~, , fk, fk, ,
k t)kp Qkp

(3)
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with k~ =k~q/2. The potential terms in Eq. (2) con-
tain the vacuum tadpole diagrams. Notice that the value
of the rr vertex is the dispersion of a boson sq
=2t(A/J)(2 —cosq„—cosq~) with a weakly renormal-
ized bandwidth 8th/J, while the A, rv-ertex is a conse-
quence of the Bose condensation. The Bose field propa-
gators D,p=(p~P~ q), with P'=(r, ),, R„,A„), are given by
D '(q) =Do '(q)+g (q), where Do ' are the bare bo-
son propagators in Eq. (2) and the g are fermion polar-
ization bubbles calculated with the vertices in Eq. (3).

First we turn to the collective modes of the model. The
density-density correlation g~ to leading order in 1/N is

given by 4b D—„. Figure 1 shows that g~ has a par-
ticle-hole continuum with a well-defined cutoff =qvF,
with vF the renormalized Fermi velocity which defines a
mass renormalization m*/m=t/(6+th /N). In the re-

gion ~ro~ &&qvF, the density-density correlation function is
dominated by a collective mode g~(q, ro) =N[(1+F]/
2)/m*1(h/J)q /(ro —coq). The dispersion of this mode,
roq=(e +c q ) '/, is analogous to that of the phase
mode of a Bose superAuid. In the long-wavelength limit
this mode reduces to the zero-sound mode of a Fermi
liquid, i.e., roq=c~q~, which is undamped for (J/t) &&6.

The sound velocity in this case is

+2 Fo 1+ —F'l +8 l Fl+A2F2+A3FlF2
ping Jpo 2

(4)
Fo=(4rpol col 'Jpoeo)/2W, F'l = 2~/(~+rb /'N) and

F$ =(Jpopo —4Jpo+4A)/2W are the Landau parameters
that describe the residual quasiparticle interactions. The
A's in Eq. (4) are dimensionless constants given in terms
of I„=p kcso"(k )6(sk/2W), with po =Io and Eo =p/2W.
At shorter wavelengths coq=sq, we recover the dispersion

of the slave bosons. The boson rq represents this collec-
tive mode in the density channel. It describes the co-
herent propagation of charge excitations (holons [9]) in

an infinite-U system.
The other important low-energy collective excitation is

related to the phase Auctuation of the valence bond. The
physical quantity in this case is the dynamical plaquette
flux variable @~=2(sinq /2)A~(q) —2(sinq~/2)A, (q).
It has been shown [10,11] that @ is proportional to the
local spin chirality C; =Tr[n;(S;+ S;+„+~x S;+~)],
where the trace means a cyclic permutation within a pla-
quette. The transverse current-current correlation func-
tion gj (q, ru) =(2~2 -~)t,,„, can be expressed as g/= (NWh/J) (@~@-~)/sin (q„/2). The spectral function
g~" is plotted in Fig. 1. We find that the interactions be-
tween the spins produce a particle-hole bound state at
Q =(x,n) just below the onset of continuum with a bind-
ing energy El, =(16W/x)e / +""". This collective
mode is an excited state with staggered spin chirality. As
the wave vector q is reduced to the incommensurate
values (x, n —qo), where qo is proportional to the hole
concentration, the peak in gj' moves to lower energies and
the gap in the spectrum vanishes. When the mode enters
the particle-hole continuum at smaller wave vectors it
gives rise to a large incoherent background which extends
to very low energies (Fig. I). The existence of low-

energy excitations carrying staggered spin chirality is
consistent with the findings of small-cluster simulations
[6]. This feature should be observable in the current-
current correlation function at large wave vectors. Un-
fortunately this regime is not easily accessible experimen-
tally.

We now turn to the gauge-invariant one-particle
Green's function of the electrons G,l(x, z) = —(T,f (x,

)zb(txz)f (t0, )0(b00)). In the unitary gauge,
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FIG. 1. The spectrum of density and transverse-current
correlation functions in frequency units of t and J, respectively,
at J/t =0.3 and 6 =0.2. The thick curves are the g," at
q = (z', x) (solid), (1.0,0.77)n (dashed), (1.0,0.83)zc (dot-
dashed), and (2/3, 2/3)zr (dotted). The light curves are the Z~
at q = (zc, zc) (solid), (2/3, 2/3) ~ (dot-dashed), (1/2, 1/2) zr

(dashed), and (1/6, 1/6)x (dotted).

Gl l describes the propagation of quasiparticles. From a
Fermi-liquid point of view, G2~ and 6 ~& describe residual
hybridization of the quasiparticles and the incoherent
part of the one-particle excitation spectrum. A charge
excitation can propagate either as a quasiparticle or as a
quasiparticle plus holon, which at large energies is a nat-
ural form of propagation in an infinite-U system. Since
the quasiparticles carry relatively small energies but can
take arbitrarily large momenta, the incoherent part of G, l

depends rather weakly on momentum but extends over a
large energy interval. The spectral function A (k, co)
= —21mG, 1(k, ro) obeys the sum rule f droA(k, co)/2x
= [1+(N —1)6]/2, i.e., the total spectral weight is
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(1+5)/2 in the physical liinit N =2. This quantity is less
than 1 since an amount of (1 —b)/2 of the doubly occu-
pied Hilbert space is pushed to infinity as U ~. Our
spectral function therefore describes the structure of the
lower Hubbard band.

To calculate Eq. (5) it is important to isolate the dia-
grams of the perturbation theory that are irreducible with
respect to the quasiparticle Green's function 6]]. Be-
cause of the existence of 6]2 and 622 there are three irre-
ducible self-energies Z„, Z„and Z;„, shown in Fig. 2.
The electron Green's function is then expressed in terms
of the self-energies as

N [b/JN +Z, (k, ru)]

ni —si, —Z„tk, ru)

The resuinmation (6) is exact irrespective of the value of
N [12]. To evaluate the one-particle Green's function we
insert in Eq. (6) the self-energies (shown in Fig. 2) calcu-
lated to order 1/N using the triangle microzone method
with a 60x60-point discretization of the first Brillouin
zone. The one-particle spectral function A(k, ru) is plot-
ted in Fig. 3 for 8=0.2, J/t =0.3, and N =2. The spec-
trum contains a quasiparticle peak of weight -6 with a
dispersion characterized by its bandwidth 8(d, +tB/2) and
a broad background extending over a scale of 2t which
carries the bulk of the spectral weight of the valence
band. The spectral function is very asymmetric for parti-
clelike and holelike excitations. At positive frequencies
the weight is rather sinall, O(6'), while at negative fre-
quencies it is of order unity. Physically, this is due to the
large on-site Coulomb repulsion U which makes it easier
to add a hole than an electron to the system close to half
filling. The incoherent background arises from Z;„„Z„
and Z„. Their contributions can be estimated in the
small-doping limit. The anomalous self-energy Z, en-
sures a cancellation of the order-unity spectral weight at
positive frequencies while it adds up to the contributions
from Z;„, and Z„at negative frequencies to provide a
background of area (1 —6)/2. The total spectral weight
is (1+6')/2 in agreement with the sum rule.

The hole part of the spectrum has a sharp edge co,dg, .
As the quasiparticle peak disperses through the Fermi
surface, the edge of the continuum moves to lower ener-
gies away from the Fermi level (see Fig. 3). This feature
has been seen in exact diagonalization of small clusters of
the t-J model by Stephan and Horsch [5]. In our model

the position of the edge is given as cuk s Gg+8k+Q
with q =Q = (x,x).

It is useful to compare our findings with the description
of the spectral function in the weak coupling of the Hub-
bard model [13). In this case the spectral function has
dispersive features which are shadows of the quasiparti-
cles which would have existed if the spins had condensed
in spin-density waves. In this case the quasiparticles are
close to the center of an approximately symmetric band.
We find that in the infinite-U limit the only dispersive
features are in the edges of a band, which is extremely
asymmetric for positive and negative energies. The
quasiparticles sit very near the top of the position of the
lower Hubbard band in the insulating limit.

The calculated integrated spectral function qualitative-
ly agrees with the simple phenomenological model recent-
ly proposed by Matho [14]. However, his model does not
incorporate the particle-hole asymmetry of the incoherent
part of the spectrum. In addition, the edges of the quasi-
particle band and the incoherent part of the spectrum do
not coincide.

The role of the slave bosons in the Fermi-liquid phase
is very different from that in the high-temperature regime
where the bosons are not condensed, as originally en-
visioned by Anderson and Zou [15]. We have shown here
that the bosons are responsible for the incoherent features
in the spectrum and have a characteristic energy of order
t. Nagaosa and Lee [10] have shown that in the high-
temperature phase the bosons are coherent excitations
with an energy scale J. They find that the integrated
spectral function is given by I (ro) =8+0(—ro) ~co(/ .J
The particle-hole asymmetry originates from the fact that
when the bosons are not condensed the Bose spectral
function is nonzero only at positive frequencies. In the
Fermi-liquid phase we find that I (ro) =6+0(—ro))ru~/r
The asymmetry stems from the subtle cancellation be-
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FIG. 2. The leading-order I/N self-energies in Eq. (6). Solid
lines: quasiparticle Green's function Go = (i v„—@,) . Dashed
lines: Bose propagators D p. The solid circles represent the
fermion-boson vertices and the open circles indicate that only
the Bose field r enters with unity vertex.
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FIG. 3. The spectral functions for J/r =0.3 and 8=0.2 at
k=0 86(a/2, m/2. ) (solid curve), k=0.67(yr/2, n/2) (dot-dashed
curve), and k =1.2(m/2, zc/2) (dashed curve).
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tern is close to an instability against spontaneous forma-
tion of incommensurate flux. This is a very subtle insta-
bility because it does not show any precursor eA'ect in the
spin-spin or density-density correlation function. Beyond
this instability point there are many metastable states
with very low energy. The uniform state minima, in this
regime, are rather shallow and we expect non-Gaussian
fluctuations to become more important in this region and
to reduce even further the scale above which the depar-
ture from Fermi-liquid behavior emerges.
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FIG. 4. The imaginary part of self-energy Z,"(k,co) close to
the Fermi energy for the t model (dashed line) and the t-J
model (solid line) with J/t =0.3 at 8 =0.2.

tween the normal and anomalous diagrams. Therefore
for energy scales smaller than the full bandwidth t, the
linear part of the normal-state tunneling density of states
is very small.

We conclude with a discussion of the low-energy be-
havior of the self-energy of the model. While J does not
change the gross features of the lower Hubbard band it
gives rise to low-lying spin chirality excitations found ear-
lier. We find that the interaction of the quasiparticles
with these excitations produces a low-energy scale ru, in

the t-J model above which ImZ„(k, ro) a: )ru~. The imagi-
nary part of the quasiparticle self-energy Z„ is plotted in

Fig. 4 for J=O and J/t =0.3 at 20% doping. In the
large-U limit, the collective modes can be thought of as
evolving continuously from the incoherent spectrum of
the parent insulating state rather than as bound states of
quasiparticle and quasihole pairs. The spin-liquid state
which evolves smoothly into the Fermi-liquid state has
low-lying chirality excitations with large wave vectors.
Their characteristic energy scale co, is much smaller than
J. A large-N estimation gives ru, = J/tr . Upon doping,
these modes interact with the single-particle excitations,
which further reduces the scale of particle-hole excita-
tions. As a result, the quasiparticles are strongly scat-
tered causing anomalous damping above a scale on the
order of co, . Notice that in this parameter range the sys-
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