
VOLUME 67, NUMBER 19 PHYSICAL REVIEW I ETTERS 4 NOVEMBER 1991

Critical Fluctuations in Strongly Type-II Quasi-Two-Dimensional Superconductors
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The critical fluctuations near H„2(T) in the mixed phase of layered type-II superconductors are relat-
ed to an equivalent system of classical particles with many-body "gauge" interactions. The scale invari-
ance of this dense vortex plasma leads to a universal character of the vortex solid-liquid melting line
where the transition to the superconducting state occurs. The relation to experimental situation in high-
T,. and other layered superconductors and superconducting thin films is discussed.
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Thermal fluctuations in the mixed phase of high-tem-
perature superconductors (HTS) have been of consider-
able interest recently [1-5]. HTS are examples of
strongly type-II (tc»1) layered systems, with the inter-
layer coupling ranging from moderate (in Y-Ba-Cu-0) to
very weak (in Bi or Tl compounds) [6]. Because tc»1,
the regime in which the average separation between vor-
tices, r„ is larger than the penetration depth A, (T) is
confined to the vicinity of H, ~(T) [7] (region of hatching
in Fig. 1); The remaining portions of the phase diagram
are region 4, near H, 2(T), where vortices are "dense"
with r, being of the order of the core size, and region 8,
far from H, 2(T) and near H, ~ (T), where vortices are di-
lute and r, is much larger than the core size, with mag-

netic induction B(r) being essentially uniform. This
division can be made more precise by expanding the order
parameter +(r) as %'(r) =(2trl )'t gJ bj pj (z,z*),
where l = (c/e*8) 't is the magnetic length, z = (x
+iy)/l, and pj (z,z*) are the Landau eigenfunctions for
charge e* =2e in a suitable gauge. In region 2 the dom-
inant contribution comes from the lowest Landau level
(LLL), j 0 [8]. The IIuctuations from higher Landau
levels [bi~o ] have a gap and are not dynamically impor-
tant near H, 2(T). In region 8 contributions from all
Landau levels are required to tnaintain the constant am-
plitude of 9'(r) over large distances. The crossover from
4 to 8 starts at some H„„,——,

' H, 2(T) [9] (Fig. 1).
We start from the Ginzburg-Landau (GL) partition

function [10]:

Z =„2)W„(r)2)+„*(r)„2)a(R)exp( —[F,[%'„(r),a(R)]+F [a(R)]]/ktt T),
where n is the layer index,

2

F, =g„d r a(T)t+„t +~t%'„t + V+ (A+a„) +„+++„+ —+„exp — dat„
n, a. 2m C C

2

r (x,y), R =(r, g), n, is the electron density, d is the in-
terlayer separation, a + 1, V x A =H, and F is the
magnetic free energy. Here we only consider the case
Hllc. We neglect Auctuations in a, which is justified for
Jc»1 [11].

In the mean-field treatment of (I) the thermodynamic
superconducting transition takes place at H, 2(T) below
which the lattice of vortices is formed [12,13]. The criti-
cal fluctuations near H„2(T) have been studied in the past
by replacing 9'(r) (2trl ) 't P bo po~(z, z ) in (1)
and using the perturbation theory in the quartic piece of
F„representing the interaction among [bp ] [8,14,15].
This approach leads to a good description of fluctuations
above H, q(T). However, the essential part of the physics
is missing. The perturbative expansion does not show any
sign of a transition to the Abrikosov lattice, even when
carried out to a large order [14]. This is in stark contrast
with Abrikosov's mean-field theory and harmonic Auctua-
tions around it [2,3] which suggest that some type of po-
sitional ordering exists below H, 2(t). On the other hand,
the elastic theory, which breaks the symmetry from the

t outset, cannot itself be used to describe Auctuations close
to and above H, 2(T). Consequently, a complete descrip-
tion of critical behavior is not available.

In this Letter we devise a theory of fluctuations in the
critical region near H, 2(T) which overcomes the above
di%culties. Our approach provides a unified framework
for both vortex "solid" and "liquid" phases within a
many-body "algorithm" which contains a detailed de-
scription of the critical behavior from the perturbative re-
gime far above H, 2(T) to the spontaneous formation of
the Abrikosov lattice far below H, 2(T). To proceed we
note that, for H=0, it is useful to write W(r) =R(r)
&&exp[i@(r)] and study fiuctuations in amplitude (R) and
phase (g) separately. The physics is dominated by the
singular part of g, corresponding to the motion of vortices
and antivortices interacting via familiar pairwise logarith-
mic interactions: We call this system a dilute vortex plas-
ma (dVP). The dVP picture remains correct in low fieIds
[far from H, q(T) ] except now only vortices will be
present. Such a dVP description of quasi-2D supercon-
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are not sufticient and the amplitude Auctuations become
essential. The confinement to the LLL provides a
stringent constraint which couples the Auctuations of R
and g. This nonlinear constraint in (1) can be enforced
exactly if we use the symmetric gauge:

lV

e(r) =(2+i')'~' g bo v» (z, z*)
m=0

=++ (z —z;) exp( —lz I'/4), (2)

I IG. l. A schematic H-T phase diagram for layered and
thin-film type-II superconductors. The dense vortex regime (3)
is separated from the dilute vortex regime (B) by a dash-dotted
H„„,, line. As OM increases, HM(T) evolves from H~(T) to
HM (T) (see text). In the region of hatching, r, ) A, and HM (T)
in layered systems turns toward H, ~(0) [ll. Inset: The same
phase diagram in the DVP scaling form. Regions I, II, and III
are defined in the text.

ductors in magnetic field has been studied in [16] and

[17]. In the critical region near H, q(T) there is a quali
tative change in this picture. When the dominant part of
+(r) comes from the LLL the phase Auctuations alone

where v» (z,z*)=z (2+i m!2 ) '~ exp( —lzl /4) and
N=0/2@i, 0 being the area of the system. The Auc-
tuations in @ and jz;j, which are in highly nonlinear rela-
tion to [bo j, are the "natural" way of representing two
distinct tendencies in +(r) near H, 2(T): The "global" su-
perconducting correlations are embodied in N, while the
"local" amplitude and phase fluctuations, coupled by the
confinement to the LLL, arise from the unrestricted
motion of [z;j.

We now use these new variables, @ and [z;j, to rewrite
the partition function (1). We first consider the rl=O
case and drop the layer index n. This corresponds to very
anisotropic systems or thin superconducting films. The
transformation in Eq. (2) involves a Jacobian cc+; &~. lz;—zjl (@&*) . After this change of variables we note
the following important fact: The integration over @ in
the partition function can be performed exactly in the
thermodynamic limit. This is a nontrivial point since this
integral contains contributions from the nonperturbative
sector of (I). This finally leads to

where

W

U
' '

&
4) —(/v+1)j2 Q I

I2
2K i (j

xexp[ —,
' NV ——, NV(V +2) ' —Nsinh '(V/J2)], (3)

exp( —plzl'/4)+lz —z, l&, g=~
~&f'& 2zl2d
&f &'I' 27rN 2pk8T

Ha=a 1—
H„(Z.)

and d is either the interlayer separation or the thickness of
the film. In (3), Z is normalized to its g =0 form.

Equation (3) is our main result. It describes a classical
incompressible many-body system of particles [z;j (vor-
tices). We call this system a dense vortex plasma (DVP).
The basic dynamical interaction among [z;j in DVP,
V([z;j), is long ranged and contains multiple-body forces
reAecting the dense vortex limit (unlike the dilute limit,
the forces cannot be reduced to two-body terms only).
We recognize the variance &f )/(f ) '~ as a square root of
an inverse of Abrikosov's P~ except that now the [z;j do
not form a lattice as in [12] but are allowed to move all
over the x-y plane. (f )/(f &'~ varies between 0 and
0.928, for the triangular lattice. DVP provides a para-
digm for the study of critical behavior in type-II systems
near H, q(T) where the main contribution to (I) comes

from many-body eAects of the vortex core overlap and
should be contrasted with a dVP description which is ap-
propriate for low fields.

Because of the scale invariance of (3), cooperative
phenomena in dense vortex systems take place at
g(T, H) =g~, where g~ is some number. There are three
physical regimes of this DVP illustrated in the inset of
Fig. 1. For g» J2, one is in regime I far above H, 2(T),
with interactions being very weak. In this regime the per-
turbation theory of Refs. [8], [14], and [15] should work
well. As one approaches H, 2(T) (g=O) one enters re-
gime I I where, for —J2 ((g« J2, the effective in-
teraction goes as +J2NV+NG(g ). Finally, for g« —v2, the effective interaction is NV N ln(42V)— —
+NG(g ). These nonperturbative correlations are
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recovered only through the integration over @. Note that
the leading term in the interaction becomes exactly the
Abrikosov mean-field free energy if the [z;] are frozen
into a triangular lattice. DVP, therefore, correctly repro-
duces all the relevant Auctuation regions.

DVP in Eq. (3) should undergo a liquid-solid transition
at some finite g. We can write down the equation for the
transition line HM (T):

g(T, HM) =gM,

where gM (0 is a pure number. HM(T) derived from
(4) has the qualitative form shown in Fig. 1 as HM(T).
This melting transition in DVP corresponds to a true
thermodynamic superconducting transition which in the
mean field occurs at H, 2(T) (gM =0). To determine the
value of this "universal" number gM we have performed a
numerical Monte Carlo simulation of DVP in Eq. (3).
All computations were done on a Cray Y-MP supercom-
puter and Stardent Titan-III mini-supercomputer and
will be reported in detail elsewhere. We find

g~ =63K-12. The origin of the uncertainty in g~ is the
relatively small system size (we are limited to 224 parti-
cles due to multiple-body interactions in DVP) and the
softness of the potential V, requiring long equilibration
times.

The large size of ~gM~ indicates that the transition
occurs deep in the nonperturbative region III and is in
herently very far from the mean-field H, (zT). Such
strong nonperturbative character arises from the infinite
degeneracy of the LLL [18]. Within our numerics
we are unable to tell whether the transition is of the
Kosterlitz -Thouless -Berezinskii-Halperin -Nelson -Young
(KTBH NY) type or possibly weak first order due to
long-range forces. The estimate of HM(T) based on the
KTBHNY theory agrees with our exact numerical deter-

0

FIG. 2. HM(T) for three different thicknesses in thin films of
Nb3Ge. The data points are from Ref. [20]. The dashed lines
are obtained from (4) with gM =67.

mination within factors of order unity [19].
The above prediction for the "universality" of HM(T)

can be tested on recent experiments with films of Nb36e
[20]. There are no fitting parameters here (the only un-
certainty left is in our numerical determination of gM).
The experimental data points in Fig. 2 agree very well
with the theoretical result (4), using a single value
gM =67. Such apparent universality in HM(T) has been
noted by the authors of Ref. [20], who compared their re-
sults with those on thin films of other materials. Our
theory provides an explanation for this empirical observa-
tion.

We now turn to the eA'ect of Josephson coupling g&0.
The partition function in Eq. (3) is simply generalized to
the case of coupled layers by including the additional
3osephson interaction:

n (-i PN
(f.'&(f„'+ )

(f.')(f4+ &

2(f„'&'Re(f„*f„&+( — )—
( „4)

(5)

Finite rt will make the positional ordering three dimen-
sional [21]. HM (T) itself should change in some continu-
ous fashion as g increases and for g&(1 should not be
very diAerent from a 2D case. In fact, we notice that the
interaction in Eq. (5) remains scale invariant. Conse-
quently, HM (T) for ri~0 can be obtained from

g(H, T) =gM
a(T, H)

(6)

2 =gM (o) —r
a(TM HM)

where y=O for g=O, and assume the KTBHNY-type

where gM (rt/a(TM, HM )) is now a number different from
gM(0) appearing in Eq. (4) for a pure 2D case. Note
that g/a=/, /d and is the natural parameter describing
the crossover from quasi-2D to 3D behavior. If we write

correlations below gM, we find y(rt/a) = C~/ln (a/C2t)),
where C [ and C2 are constants of order unity. Thus, un-
less HM(T) is very close to H, 2(T), the T and H depen-
dence of gM(rt/a(TM, HM)) is weak and HM(T) is still
approximately of the universal form (4) but with gM
shifted to some lower value [HM (T) moves toward
H, 2(T)]. This is the situation in very anisotropic systems
where the identity of a single vortex is not maintained
from layer to layer and where the physical picture is that
of a set of 2D DVP's moving in a random potential pro-
vided by the adjacent layers through Eq. (5) [22]. If
HM(T) gets too close to H„2(T), so that rt/a(TM, HM)
=g, /d ~ 1, deviations from (4) will become significant
and a description in terms of the anisotropic 3D GL
theory will be more appropriate, with vortices in DVP
becoming continuous lines [23].

In this paper we have developed a description of critical
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I[uctuations near H, q(T). One should keep in mind that
this DVP description holds in region A and cannot be ex-
tended to low fields [region 8, near H, ~(T)]. This rela-
tionship to the low-field dVP behavior can be illustrated
on the example of HM(T). Equation (4) can be rewritten
as f(t, h) =8Mth, where t—= T/T, o, h= H/—H, 2(0), f(t, h)
is the BCS condensation energy normalized to its value
E, at T=H=O, and OM =gMT. o/2trgodEe Fo.r Ost «1,
Hst(T) is close to H, 2(T). Since Ost-gst(kF(pd)
H~ will be near H, 2 in most superconductors and the
DVP description is appropriate. This behavior is denoted
by Hst(T) in Fig. 1. However, for 1 —t«OM, Hst(T)
always drops below H,„„,and the low-field dVP has to be
used. In dVP the transition hne is largely independent of
H [17]: T~= T, o/( I+Ost), OM =Ost. Thus, if Ost is

small, the DVP-dVP crossover in HM(T) will occur at
rather low fields, only very close to T,o. As 0~ increases,
Hst(T) in Fig. 1 evolves from Hst(T) to HM'(T), where
the DVP-dVP crossover occurs at moderate fields. This
may take place in strongly fluctuating systems like Bi-
Sr-CaCu-0 or in very thin films. Finally, disorder will

play a role in real superconductors [4] and can be readily
incorporated in DVP.
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