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Demixing Phase Transition in a Mixture of Hard-Sphere Dipoles and Neutral Hard Spheres
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For a mixture of hard-sphere dipoles and neutral hard spheres we calculate the correlation functions
from integral equations and evaluate the concentration structure factor S„(k). For large enough dipolar
interaction, this structure factor becomes infinite, indicating a demixing phase transition. This instabili-
ty is also found for charged hard spheres in a dipolar solvent and is the reason for the problems faced
previously in investigations of hard-sphere model electrolytes.

PACS numbers: 6 l.20.Gy, 64.70.Ja, 82.60.Lf

Mixtures of hard-sphere dipoles and hard-sphere ions
are studied as models of electrolytes. They are theoreti-
cally investigated by simulations [1-3] and by Ornstein-
Zernike-type integral equations [4-6]. With both ap-
proaches, unsurmountable diSculties appeared when in-
teresting concentration ranges, e.g. , 1M solutions of sing-
ly charged ions, were studied. Only wild guesses for the
reasons for this desperate situation were discussed, espe-
cially questioning the approximations in the theory.

We have now discovered that a demixing phase transi-
tion of the system is the reason for the unsatisfactory
answers in studies that start from the expectation that the
system is homogeneous.

We demonstrate in this Letter the capability of the
Ornstein-Zernike integral equations with a reference
hypernetted chain closure (RHNC) to analyze the de-
mixing phase transition. The detailed calculation is for
the simpler system with no charge on the hard spheres,

which are dissolved in the dipolar hard spheres. We have
seen the same phase transition for a 1.5M solute of
charged hard spheres, when the charge grows to a value
of about —,'of an electron charge in the same dipolar sol-
vent as studied here.

l. Susceptibilities. —The demixing phase transition is
seen by a singularity in a susceptibility. We first derive
the relations between several susceptibilities and the
correlation functions calculable from the integral equa-
tions.

In view of the experimental conditions, fluctuations are
usually considered at constant pressure [7,8]. In the in-
tegral equations the independent variables defining the
system are the particle densities, not the pressure or the
partial pressures. Therefore the density-functional ex-
pansion of the grand free energy is the proper starting
point for relating the susceptibilities to the correlation
functions:

fO fO BnD[T,p +Sp, ] =Q[T,p, ]+ —,
' g 6p, (1)6ptt(2)d1 d2.

'b

The second functional derivatives of 0 are related to the
direct correlation functions [9-11]:

6'n =kT S,p8(1, 2)
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The variables 1=—(ri, coi) imply the position and orienta-
tion of particles, e.g. , dipoles, and p, (1) gives the number
of particles a at r] pointing in the direction cot per unit
volume and unit space angle. p (ri) = fdhoip (1) is the
number density per unit volume; for the homogeneous
system we write p, . 6p, (1) as well as the correlation

ap. (1)=g Sp!"'(ri)V(„,(to(), (3)
lm

c,p(1, 2) = g c.p' (ri2)e" "(cuicu2co„) . (4)
l
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The functions & ' ' (coitu2co„) are linear combinations of
spherical harmonics, the so-called spherical invariants
[12,13]. The integrals in Eq. (1) are convolutions, and
become products when being Fourier transformed. After

t

the angle integration and the so-called "k-frame" trans-
formation [12,13] we obtain

x[g.,g. ,..—( —1)- "'"'(k)p'"p'"(» +1) '"(»2+» (5)

Def, ning a vector bp(m k) a diagonal matrix p-i/2, and the bracket ln Eq. (5) as the matrix I-(—1)-C(m, k), Eq.
(5) can be rewritten as

J d3k+4(re(m, k)p 'I [I —( —1) C(m, k)]p 6p (m, k) .
m

(6)
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The indices of a vector and matrix denote kinds of parti-
cles as well as angular indices from the expansions in Eqs.
(3) and (4). Details can be found in Ref. [14]. In Eqs.
(5) and (6) 80 appears as a homogeneous polynomial of
degree 2 in the density IIuctuations introduced in Eq. (3).
The coefficients forming the matrix C are calculated from
the direct correlation functions c,II' (r ~2).

For our discussion in this paper we are interested only
in the m=0 part of Eq. (6). m&0 parts relate to the po-
larization fluctuation and multipole moment fluctuations.
When we include in the expansion Eqs. (3) and (4)
l~, l2~ 3, I —C(m=O, k) is a 5X5 matrix and has block
diagonal form. The particle densities are related to a
3X3 submatrix [I —C(O, k)]3, with the indices 1 =(neu-
tral), 2=(dipole, i =0, m =0), 3=(dipole, i=2, m=0).
In a complete analysis [15], we should diagonalize this
matrix and search for the smallest eigenvalue, which goes
to zero, and study the corresponding eigenvector. As a
shortcut, we have calculated Det[I —C(O, k)]3. This is
the denominator in the concentration-concentration struc-
ture factor

S„(k)=—(ac(k)~e( —k))1

(I/W) joe(k)ac( k)e t""—
(7)

The concentration is defined as c(r~) =pd(r~)/p(r~), and
p(r~) =pd(r~)+p„(r~); for the homogeneous system we
write c and p. Therefore 8c(k) =p '[(I —c)Bpq(k)
—c6p„(k)]. Using Eq. (6) and the technique outlined in

Ref. [16] we have

S„,(k) = c(l —c)[a~~(k)a33(k) a]3(k)]
Det[I —C(O, k) ],

where

(8)

and

a~~(k) =1 —p[(1 —c) c„„(k)+2c(1—c)c„q (k)

+e'cdd (k)],
a33(k) = I —pdcdd (k)/5,

a~3(k) =(pdp/5) ' [(1 c)c„"d (k)+ccd—d (k)] .

When there is no interaction between the particles, then
S„(k)=S,", =c(1 —c).

2. Demonstration of the phase transition Our system. —
contains hard spheres of diameter o. with dipoles in their
center (the solvent) and neutral hard spheres of the same

Using the Ornstein-Zernike equation S„(k) can also be
expressed by the total correlation functions h,&(1,2):

S,„(k) =c (1 —c) [I —p [(1 —c ) h„„(k)
+2c(I —c)h„d (k)+c hdd (k)]].

(9)

+g „h.,(1,3)p, (3)c„p(3,2)d 3,

and the RHNC closure [17],

(10)

I+h,p(l, 2) =exp[ —Pu p(1,2)+h,p(1, 2)
—c,p(1,2)+8 p(1,2)l,

where u p(1,2) is the interaction potential between parti-
cles a at 1 and p at 2, and the "bridge term" 8,t3(1,2) is
chosen such that the known pure-hard-sphere result [18,
19] is obtained when the dipoles are switched oA':

8,~(1,2) = ln [1 +h,"p (1,2) ] —h,"& (1,2) +c,"p (1,2) . (12)

Comparison with simulations [1,4] has shown that Eqs.
(10)-(12) yield good correlation functions for ion-dipole
mixtures. The angular functions are again expanded in

spherical invariants and Eqs. (10) and (11) yield a sys-
tem of integral equations for the r-dependent expansion
coefficients, which is solved by iteration. If the angular
expansion includes l[,l2~ 3, we have 19 unknown func-
tions. The solution procedure is similar to that published
by Fries and Patey [4] combined with the ideas of Caillol
[20]. Details will be published elsewhere [15].

When the iterative process has converged, we take the
direct correlation functions c;~(1,2) and evaluate the sus-
ceptibility Eq. (8). For the dipole strength p* between
2. 1 and 2.6 we plot the smallest value of S,', /S, „(k),
which turns out to be at k =0, versus dipole concentration
c in Fig. l.

The zeros of S„(k) in Fig. 1 indicate the demixing
phase transition. The closer we come to the phase transi-
tion the more difficult it becomes to find convergent solu-
tions of the iteration process. The drop to zero appears to
be rather sudden. We have extrapolated to the zeros in

Fig. 1 and plotted a phase diagram in Fig. 2. The curve
in the phase diagram separates the homogeneous phase
below from the unstable phase above. It is a spinodal.
Further investigations are necessary to find the coex-
istence curve. We have checked that curtailing the angu-
lar expansions at an earlier stage (l ~, lq ~ 2) makes only
small numerical but no qualitative diAerences.

3. Demixing of ion solutions We have .f—ound the
same instability for hard-sphere ions dissolved in hard-
sphere dipoles. We investigated a 1.5M ionic solution
(p+ =p*—=0.056655) in a solvent of density pd =0.8 and
p* =2.0. We gradually increased the charge on the pos-
itive as well as on the negative ions. The charge is mea-
sured by q*2=q /okT, where q is the charge of one ion.

diameter o (the solute). The strength of the dipole in-
teraction is characterized by p =p /o kT, with dipole
moment p and temperature T. The reduced density of
the whole mixture is p* =po. =0.8. We vary the concen-
tration of solvent c. The correlation functions c;~(1,2)
are calculated from the bernstein-Zernike equation,

h.,(1,2) =c.,(1,2)
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FIG. 2. Phase diagram for a mixture of hard-sphere dipoles
and neutral hard spheres. The spinodal line separates the un-
stable region from the stable or metastable region.

FIG. l. The inverse structure factor c(l —c)S,, '(k =0) vs

dipole concentration c for several values of dipole interaction
p* =2.1, 2.2, . . . , 2.6.

When q* grows to 57.0, a demixing instability occurs,
again demonstrated by a zero in the denominator of
the concentration-concentration structure factor S„(k)
analogous to Eq. (8). If the ionic density is decreased to
IM (p~ =p*—=0.03777), the transition occurs at higher
ionic charge, close to q* =60. For very small ionic den-
sities like 10 M there is no instability up to q* =144
(corresponding to one electron charge on the ion at room
temperature and a =4 A). Many more calculations are
necessary to yield a phase diagram, but we can say al-
ready that with lower ionic charge we can go to higher
ionic concentrations before the instability occurs.

4. Inside the spinodal region. —What happens when

we try to determine the correlation functions inside the
spinodal region? With the same iterative program it is

actually possible to find convergent correlation functions
in this region which have a long-range oscillating tail
with a wavelength much larger and not necessarily a mul-

tiple of the particle diameter o, contrary to the fast-
decaying correlation functions outside the spinodal range.
Examples are shown in Fig. 3, which is for the case
p* =2.0, q* =58.0, pd =0.8, p+ =p*—=0.056655. Be-
cause ppg, ti(1,2) =pti[1+ h,p(1,2)] is the density of parti-
cles of kind P at 2 under the condition that there is a par-
ticle a at 1, the content of Fig. 3 can be read as follows:
Around a particle (ion or dipole) there are shells of alter-
nating concentrations of ions and dipoles. The ion con-
centration wave is in phase for + and —ions yielding
shells which are locally neutral. Only the neighboring
three shells of particles do the screening. The wave of the
dipole concentration is half a wavelength out of phase
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FIG. 3. A solution inside the spinodal region, and the corre-
lations around a positive ion. The last two curves show the con-
ditional local total density and the local total charge density.

compared to that of the ions. Their maximal density Oils
in the minima of the ion density to such perfection that
the particle density shows no long-range oscillations as in
a normal liquid. The constancy of particle density and
the neutralization of charge can be seen from the condi-
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tional local total density

(p++ p-+pd)g+, (1,2)

=p+g++ (1,2) +p g+ (1,2) +pdg+d (1,2)

and the conditional local total charge density qq+, (1,2)
=q[p+g++(1, 2) —

p —g+ —(1,2)], which are plotted as
the last two curves in Fig. 3. We find that with these
correlation functions, the denominator of the structure
factor has a zero at exactly that k value which belongs to
the long-range concentration waves. The related singu-
larity is integrable. Because Eqs. (10) and (11) can be
derived (with some approximation) from the requirement
that the grand free energy is stationary with respect to
variations in local particle density, we come to the inter-
pretation that we find at least metastable states with con-
centration waves in the spinodal region. Because we
asked for conditional densities in an infinite system, we
see the concentration waves around our particle, which is
at the center and breaks the translational symmetry. In a
finite system, as could be simulated for instance, one
should find the concentration waves normal to the boun-
daries. Exactly analogous circumstances have recently
been found experimentally in a case of spinodal decompo-
sition [21], though in that case, the state with the concen-
tration waves slowly degraded to longer wavelengths. In
further studies we hope to analyze the degree of metasta-
bility of our state with concentration waves.

Conclusions. —We have discovered a demixing phase
transition in a mixture of hard-sphere dipoles with hard-
sphere ions or neutral hard spheres of equal size. In the
case of neutral solute the phase transition requires a
minimal strength of the dipole interaction p . For
larger dipole moments (lower temperature), the spinodal
region grows. With ions dissolved in the dipoles, rather
small concentrations such as 1M or 1.5M show demixing,
when the charge on the ions q* grows to a certain value.
This instability is the reason for previous problems with
integral equations and simulations investigating the
hard-sphere model electrolyte. Inside the spinodal region,
there appear to be at least metastable states with concen-
tration waves. Indications of a demixing tendency have
been reported in a Monte Carlo simulation [3] which has
too many limitations to be conclusive. The driving force
for the demixing is obviously a lowering of the dipole in-

teraction energy when the dipoles can optimize their ar-

rangement, not being disturbed by the wrong concentra-
tion of nondipoles. This mechanism reminds one of the
expulsion of "hydrophobic" molecules from water. There
the optimization of a hydrogen bond network is the driv-
ing mechanism. We would like to be informed about mis-
cibility gaps in chemical systems which come close to
hard-sphere dipoles and equal-size ions.
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