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We compute the asymptotic structure factor Sz(t) [=L(t) g(kL(t)), where L(t) is a time-dependent
characteristic length scale and d is the dimensionality] for a system with a nonconserved n-component
vector order parameter quenched into the ordered phase. The well-known Ohta-Jasnow-Kawasaki-
Yalabik-Gunton result is recovered for n =1. The scaling function g(x) has the large-x behavior
g(x) —x "+"', which includes Porod's law (for n =1) as a special case.
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The phase ordering dynamics of a system quenched
into the ordered phase from a high-temperature homo-
geneous state is an area of continuing interest [1]. The
fascination of this field is due in great part to the scaling
regime which emerges in the late stages of growth. There
is overwhelming experimental and numerical support for
the "scaling hypothesis, " according to which the structure
of the order-parameter field at time I, after the quench is
characterized by a single length scale L(t). For example,
when the order parameter is scalar, L(t) measures the
size of the ordered domains that have developed at time t.
Much recent interest has also centered on phase ordering
in systems with more complicated internal symmetries
such as n-component vector models [2,3] (including su-
perconductors) and the nematic phase of liquid crystals
[4]. However, little is known about the analytic form of
the structure factor in such systems. The only analytic
result we are aware of is due to Puri [5], who has ob-
tained an asymptotic form for the case of a nonconserved
two-component order parameter with O(2) symmetry,
but did not investigate the tail behavior. In this Letter
we derive, for the first time, the structure factor for a
nonconserved n-component vector order parameter with
O(n) symmetry. Our approach is based on a singular
perturbation expansion proposed by Suzuki [6] and ex-
tended by Kawasaki, Yalabik, and Gunton [7].

The most important consequence of the existence of a
characteristic length scale L(t) is that the order-param-
eter correlation function

C(r, t) =(y(x, t) (tt(x+r, t))
has the scaling form C(r, t) —=C(r, t) =f(r/L(t)) (assum-
ing isotropy). The angular brackets in (1) indicate an
average over the ensemble of possible initial conditions.
Of greater experimental interest is the I ourier transform
of C(r, t), the time-dependent structure factor Sk(t),
which is directly measurable in scattering experiments.
The corresponding scaling form for Sk(t) is

where d is the dimensionality. In this Letter, we obtain a

closed-form expression for the real-space scaling function
f(y) for the case of a nonconserved n-component vector
order parameter with O(n) symmetry. We find that the
corresponding scaling function in momentum space has
the asymptotic behavior g(x) —x t +") for large x
[=kL(t)], i.e., in the tail. For the special case when
n =1, our closed expression for f(y) reduces to the well-
known result of Kawasaki, Yalabik, and Gunton [71 and
Ohta, Jasnow, and Kawasaki [8]. Furthermore, the so-
called Porod's law [9] for the one-component system
[g(x) —x +' ] is recovered from our general form.
The explicit n dependence of the tail exponent in the gen-
eral result is remarkable and unexpected: Naively, one
might have anticipated the same behavior for all systems
with continuous symmetry (n~ 2). Possible experimen-
tal consequences of our predictions will be discussed.

The equation of motion for the nonequilibrium dynam-
ics of a nonconserved n-component vector order parame-
ter with O(n) symmetry p(r, t) reads (in dimensionless
variables) [10]

=0 —(0 )4+& 11. (3)

yp(r, t ) =exp[t (1+V')] y(r, O) .

Since the linear solution diverges exponentially with t,
each term in the perturbation expansion is more divergent
than the last. In the singular perturbation method [6,7],
the divergence is handled by retaining only the dominant

The absence of a thermal noise term in (3) indicates that
we are working at temperature T =0: Temperature is an
"irrelevant variable" for phase ordering dynamics (pro-
vided T is less than the critical temperature T„) Equa-.
tion (3) has to be supplemented by an initial condition on

We make the reasonable assumption that the com-
ponents of ~(r, O) are independent Gaussian random vari-
ables with (p;(r, O)) =0, where P; is a Cartesian com-
ponent of p. The singular perturbation technique applied
to (3) involves an iterative expansion in terms of the solu-
tion of the linear part of (3), viz. , the "noninteracting"
solution
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divergent contribution at each order. In this limit, every
diagram at a given order yields the same, easily evalu-
ated, contribution. Applying this technique to (3) gives
the result [11]

(5)

ed by the initial conditions. By singularities we mean the
set of points at which p(r, t) =0. Such points form walls
(n = I ), strings (n =2), or hedgehogs (n =3), and their
density decreases with time as L(t)

It is now a straightforward (though lengthy) procedure
[11] to obtain from (4) and (5) the real-space correlation
function C(r, t) =(p(x~, t). &(x2, t)), where r = lx~

—x2l.

where the final expression is valid as t Using the integral representation

It should be stressed that we do not believe (5) to be
exact. Rather, (4) and (5) capture the essential features leol
of the assembly of topologically stable singularities seed-

for each of the factors in C(r, t) yields

(d8/ J2tr )exp( —8'y(')/2)

C(r, t) = (pq(I ).pq(2)exp[ —(0 /2)pq(1) —(y /2)pq(2) j),do dy
"J2tr" "J2tr

where pp(1):pp(x~, t), etc. Now, the diA'erent Cartesian components of pp(r, t) are independent random variables ac-
cording to (4). In fact, if we let x and y stand for a given component (say the first) of pq(1) and pp(2), then from the
Gaussian property one has the joint probability distribution

1p(x,y)=. . .t, exp
2@a I —y

where

cr'=(x') =(y'), y=(xy)/(x') .

X +g 2 /X'
2a'(I - y')

(7)

The parameter y carries the scaling dependence on r and t: From (4), it follows that

y =exp[ —r '/2L(t) '),
where we have introduced L(t) =(4t) 't in anticipation of its emergence as the characteristic length scale. In particu-
lar, y I for r «L (t), while y 0 for r ))L (t).

Using the statistical independence of the diA'erent Cartesian components of pp(r, t ), the average over initial conditions
can be carried out separately for each component. After some algebra, the result reduces to

dO dC( t ) [I +g2+ 2+ (I 2) 02 2] —(n 2+)/2

J2tr J2n
The y integral can be evaluated by elementary means. After changing variables to x =0 we obtain the final closed-
form result [12,13],

C(r, t ) = "y 8 " — dx x 't'(1+x) '"+""(I+[I —y']x)
2~ 2 2

ny n+1 1

2x 2 '2
1 1 n+2F 2'2' 2

where 8(x,y) —= I (x)I (y)/I (x+y) is the beta function,
and F(a,b;c;z ) is the hypergeometric function.

Several limiting cases of (11)are of interest. For n = I,
the identity

F( —,', 2, —,',z ) =arcsin(z)/z

gives the well-known result [7,8) C(r, t ) = (2/n)
xarcsin(y), with y given by (9). For n ~, the integral
leading to (11) is dominated by small x [i.e., x =O(1/
n)], so the final factor in the integrand can be replaced
by unity to leading order. This gives C(r, t) =y, in agree-
ment with the exact solution in this limit [3]. For general
n one can extract simple forms for large and small values

of the scaling variable r/L(t), i.e., the limits y 0 and

y 1. For y 0, F(a,b;c;0) = I gives immediately

C(r, t) (ny/2') [8((n+ I )/2, 1/2))

i.e., C(r, t) —exp[ —r /2L(t) ] for r))L(t). The limit

y 1 is much more interesting because it turns out that,
for any n, the scaling function f(y) defined by C(r, t)
=f(r/L(t)) is nonanalytic in y at y =0. It is this
nonanalyticity in f(y) which leads to the power-law tail
in its Fourier transform, the scaling function g(x) of (2).
As an example, the n=l scaling function f(y) =(2/tr)
&&arcsin [exp( —y /2)) has the small-y behavior f(y) = I
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—(2/tt)y. It follows that g(x) —x +' for large x, which is the well-known Porod's law [9]. For general n, we
rewrite Eq. (11) in a form more convenient for considering the limit y l. Using standard transformation formulas for
the hypergeometric function [13], (11)can be recast in the form

1 1 2 —n
I 2 + ny I ((n+1)/2)I ( —n/2) z „tz n+1 n+1 n+2

For y 0, 1
—

y =—1
—exp( —y ) =y . Considering first

the case where n is an odd integer, it is clear from (12)
that, since F(a, b;c;z ) has a power-series expansion in z
for small z, the leading nonanalyticity in y comes from
the second term in (12), which yields a contribution of
order y". [Since C(r, t) depends only on r —= ~r~, analytici-

ty in r would require an expansion in even powers of r.]
Specifically, this singular part of C(r, t) is

n r ((n + 1)/2) r( —n/2)
2~ r((n+ 2)/2)

(13)

When n is an even integer, the two terms in (12) combine
to give a leading singularity of the form J"lny. As a
matter of fact, Mondello and Goldenfeld [2] have numer-

ically observed that, for n =d =2, 1 f(y) —y—~ for y ((1,
with &=1.6. Given a limited range of y values, this is

compatible with our analytic form for n =2, d =2, viz. ,

1 f(y) —y—(1/y). It turns out that the tail behavior in

g(x) for even n is the same as that derived below for odd

n [11],so for the moment we will confine ourselves to the
case where n is odd.

From (13), simple power counting yields g(x)
-x +" for the large-x behavior of g(x). To deter-
mine the coefticient we assume

g(x) —A (n, d) x 'd+"', x—~ (14)

and Fourier transform g(x) to get the leading singular
term in f(y). Comparing the result with (13) confirms

(14) and gives

n I ((n + 1)/2) r((d +n)/2)
2tt r((n +2)/2)

(15)
We note that the final result (15) is smooth as n passes
through the even integers. In fact, one can confirm that
(14) and (15) hold for general n Equatio. ns (11) and
(14) constitute the central results of this Letter.

Qualitatively, Porod's law for the one-component case
can be understood as the consequence of sharp interfaces
between domains [9]. Clearly, systems with continuous
symmetry do not have sharp interfaces. Naively, one
might expect that the absence of sharp interfaces in sys-
tems with O(n) symmetry would result in exponentially
decaying tails for the scaled structure factor, as in the
n ~ limit [3]. Our results indicate that the tail of the
n-component structure factor has the remarkably simple
power-law form (14). For the physically important case
n =2, d =2, we can construct a simple heuristic argument
[11] which recovers (14) by exploring the vortex config-

uration. This argument generalizes to any case where the
system has topological singularities, i.e., for n ~ d. How-

ever, the considerations leading to (14) suggest that the
tail behavior is independent of the existence of topological
singularities in the system. We are presently investigat-
ing the role of topological singularities in fixing a power-
law behavior like (14) for the tail. We have already not-

ed that, for n ~ d, (4) and (5) generate the topologically
stable field configurations (walls, strings, and hedgehogs)
that can account for (14). We suspect that (14) may be
spurious for n & d, being associated with topologically un-

stable singularities generated by (4) and (5) but absent
from the full dynamics (3). For d =1, n =2, for example,
the structure factor is known to have a Gaussian tail [14].
Of course, it should be kept in mind that most cases of
physical interest are described by n ~ d and, hence, do
have topological singularities present.

Finally we discuss the experimental relevance of our re-
sults. Most experiments so far have concentrated on the
case with a scalar order parameter. However, a variety
of important experimental systems, e.g. , superconductors
[described by the two-component case of (3)] and nemat-
ic liquid crystals [4], are described by nonscalar order pa-
rameters. Related models have been used in an attempt
to understand the large-scale structure of the Universe
[151. We urge experimentalists to investigate the short-
wavelength behavior of scattering data from systems with

continuous symmetries as a test of our predictions.
To summarize, we have derived an asymptotic form for

the structure factor for nonconserved order-parameter
systems with O(n) symmetries. The most remarkable
feature of our result is the emergence of a simple power-
law form for the tail of the structure factor in momentum

space, viz. , g(x) —x +" . This is probably related to
the existence of topological defects in these systems and
we are currently investigating the connection. We expect
that the tail behavior reported here is more general than
the methods used to derive it would suggest. Specifically,
as is known to be true for the one-component case, we be-
lieve that a similar tail behavior wi11 be seen in con-
served-order-parameter systems with O(n) symmetries.

S.P. is grateful to the Deutsche Forschungsgemein-
schaft (DFG) for supporting his stay at Mainz under
Sonderforschungsbereich No. 262.

Note added. —After this Letter was submitted for pub-
lication, we received a preprint from Toyoki [16], who

has derived equivalent results by similar methods. Nu-
merical simulations by Toyoki [17],on d =3 systems with
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n =2, 3, give results fully consistent with the prediction of
Fq. (14).
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Jawaharlal Nehru University, New Delhi 110067, India.
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