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A recently proposed phase-space representation for quantum mechanics provides a formal means for
investigating the correspondence between classical and quantum mechanics. To explore the implications
of this new representation, we introduce a numerical method for propagating an initial wave function
directly in phase space. We illustrate the usefulness of the proposed method by analyzing two simple

quantum-mechanical systems in phase space.

PACS numbers: 03.65.Ge, 03.65.Sq

Recently, we have introduced a phase-space represen-
tation of quantum mechanics which satisfies the mathe-
matical requirements of a quantum-mechanical represen-
tation [1,2]. In this representation, the momentum P and
coordinate Q operators take the form p/2—ik d/0g and
q/2+ih d/0p, respectively. As in the coordinate or mo-
mentum representations, the time evolution of an initial
wave packet in phase space is governed by the quantum
propagation operator, exp(—itH/h), where H is the
Hamiltonian operator in the phase-space representation,
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Formally, the propagator in Eq. (1) generates the time
evolution for an initial wave function y(p,q;0) from time
t =0 to time ¢ directly in phase space; however, it is not
clear from Eq. (1) how one might implement this equa-
tion practically to study quantum dynamics in phase
space. The subject of this Letter is the description of a
numerical method that will accomplish this task.
The use of a symmetrically split propagation operator, |
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implemented successfully by Feit, Fleck, and Steiger [3]
for the propagation of the Schrodinger equation in the
coordinate representation, can be applied to the time
propagation of a wave function in phase space as well. In
this algorithm, the operator exp{—t[A +B1} is written in
terms of the operators expl —7.4/2] and expl — 8] as fol-
fows:
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where the difference between the two sides of the above
relationship is given by
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and [4, B]—AB BA is the commutator between the
operators A and B. By choosing the time interval to be
sufficiently small, one can render the terms in Eq. (3)
negligible.

When the approximate propagator (2) is adopted, one
is actually replacing the evolution equation
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an equation with time-dependent operators, affecting the phase of the wave function.
In the phase-space representation of quantum mechanics, the split-operator approximation (2), when applied to the

quantum propagator (1) for a small time At, takes the form
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Although seemingly difficult to apply, this is actually a very convenient expression since a fast-Fourier-transform routine
can be utilized to evaluate the action of this operator on a function of p and g, as we show below.
The Fourier transform of the application of p/2 —i# 8/8q to a wave function w(p,q;t) is given by (the limits of all in-
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tegrals are understood to be = oo unless otherwise noted)
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where we have assumed that boundary terms vanish. Equation (4) suggests that one can calculate the Fourier trans-
form of the wave packet, multiply it by (p+p')/2, where p' is the reciprocal variable to g, and invert the Fourier trans-
form to compute the operation of P on the wave function |w,) in phase space. This is also true for any function of the
momentum operator P; therefore,
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We can repeat the above derivation for the part of the propagator that contains the potential operator, obtaining (note

the change in sign in the Fourier kernel and the integration over p)
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where q' is the reciprocal variable to p. The above ex-
pressions can be evaluated numerically quite efficiently
through the use of the fast Fourier transform.

As a simple illustration of the method, we examine the
dynamics of the scattering of a Gaussian wave packet
from a potential step. This is a textbook example and has
been reviewed by Kosloff and Kosloff [4] to illustrate
their method for wave-packet propagation in coordinate
space (we note that a variation of their coordinate-space
propagation algorithm could be applied to phase space
equally well by using the results in this paper). In this
system, the energy of the wave packet is 1.26 and the bar-
rier height is 1. This model system illustrates the devel-
opment of nodal structure due to quantum interference
between the advancing and reflected parts of the wave
packet when it encounters the potential step. By treating
the same problem in phase space, we can obtain a more
comprehensive picture of the processes involved in the dy-
namics.

Figure 1(a) shows a phase-space diagram of the square
magnitude of the initial Gaussian wave packet, Ivl(F;t
=0)|%, and the energy surface on which it evolves.
Below the phase-space diagram, the square magnitude
|w(g;t)|? of the projection [1,2] w(g;t) = fdpexp(+ipg/
2h)y([;t) of the phase-space wave function onto the
coordinate representation is shown. The square magni-
tude |y (p;t)|? of the projection w(p;t) = fdqexp(—ipq/
2A)y(I;t) onto the momentum representation is shown
to the right. Figures 1(b) and 1(c) correspond to
“snapshots”™ of the dynamics taken at subsequent times.
From these frames, one can see how the wave packet in
phase space breaks into three parts as it is evolving in
time. First, there is a part whose momentum is near zero
and which, consequently, moves very slowly. A second
part of the wave packet smoothly changes its direction as
it is reflected from the step, and combines with the part
that stayed behind. Finally, a third part of the wave
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packet has enough energy to overcome the barrier and
continues moving past the step with smaller momentum.
The analysis in phase space allows us a better under-
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FIG. 1. Snapshots of the evolution of the Gaussian wave
packet which is being scattered from a step potential at ¢ =0, in
a dimensionless phase space. The energy of the wave packet is
1.26 and the height of the barrier is 1. Thin and dark lines cor-
respond to contour plots of the energy surface and the wave
packet, respectively. Below and to the right of each diagram is
a plot of the projection of the wave function onto the coordinate
and momentum spaces (coordinate and momentum wave func-
tions), respectively.
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FIG. 2. Snapshots of the evolution of a set of 10000 point
particles, with an initial distribution like the one in Fig. 1(a),
which are being scattered from a step potential at ¢ =0, in a di-
mensionless phase space. Below and to the right of each dia-
gram there is a histogram indicating the distribution of particles
with momentum or coordinate, respectively, lying within a small
range of values (coordinate and momentum distributions).

standing of the dynamics: Each peak appearing in the
coordinate wave function corresponds to a different part
of the wave packet in phase space. These pictures suggest
that, in this case, “‘quantum interference” effects may be
partly explainable in classical terms. Each piece of the
reflecting and transmitting wave packet resides in a
different region of phase space and it is only when the
wave function is projected onto coordinate or momentum
space that one loses this perspective.

In Refs. [1] and [2], we have suggested that a classical
analog of the square magnitude of the wave function in
phase space is a classical probability density p(I';z),
whose time evolution is dictated by the classical Liouville
equation of motion. In addition, the classical analog of
the square magnitude of the coordinate-space wave func-
tion |y(g;t)|? is the average [dpp(I';t) over p of the
classical probability density, and, likewise, the classical
analog of |y (p;t)|? is the average [dq p(T';t). Because of
the different ways in which the quantum and classical
projections are done, we should expect the interference
pattern observed in w(g;t) to be “washed out” in corre-
sponding pictures of fdp p([;t).

In a classical calculation, we used 10000 trajectories
with initial conditions distributed in phase space accord-
ing to the Gaussian density given by the initial quantum
Gaussian probability of Fig. 1 to simulate the dynamics

-
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FIG. 3. The three lowest eigenfunctions for the quartic
double-well potential in phase space. Below and to the right of
each diagram there is a plot of the projection of the wave func-
tion onto the coordinate and momentum spaces, respectively
(coordinate and momentum eigenfunctions).

of p(I';r). In Fig. 2, snapshots of this set of points in
phase space and of its averages over p and g are shown at
the same times as in Fig. 1. By comparing Figs. 1 and 2
we conclude that the classical and quantum behavior are
qualitatively the same with some small quantitative dif-
ferences. Since the classical averaging process is over
real-valued functions, only constructive addition of the
pieces of the distribution are permitted, thus, “washing
out” the interference effects. Clearly, further differences
between the classical and quantum dynamics will arise
for systems that display purely quantum effects such as
tunneling.

The time evolution of a wave function in phase space
can also be used to find the energy eigenvalues E,
and eigenfunctions |¥,) via the standard time-dependent
formalism which utilizes the Fourier transforms
limy . oo f T dtexpliot ) woly,) and

T
|w,) e Tlimw(l/ZT)f_Tdtexp(iE,,t/h)lw,) ,

for a given initial wave packet |y). In Fig. 3, we show
the lowest three eigenfunctions in phase space for the
quartic potential U(g) =yg*—g?/2, with y=0.06.
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FIG. 4. Classical analogs of the eigenfunctions of Fig. 3. (a)

Classical analogs of Figs. 3(a) and 3(b); (b) classical analog of

Fig. 3(c). Below and to the right of each diagram there is a

plot of the averages over momentum and coordinate, respective-
ly (coordinate and momentum densities).

In our earlier study, the harmonic oscillator in phase
space was found to have many eigenfunctions correspond-
ing to a given eigenvalue [1], one of which has the ap-
pealing property that the classical analogs are proportion-
al to [H(M)1"expl— H()/hwl. In Fig. 4, we show two
of these classical densities for n =0,1 and for the case of
the quartic potential of Fig. 3. The lowest two quantum
ecigenstates in Fig. 3 correspond to eigenenergies with
very close values, forming a pair of eigenstates, and they
look very similar to the classical density of Fig. 4(a). The
third eigenfunction of Fig. 3(c) is very similar to the clas-
sical density of Fig. 4(b). Even the corresponding projec-
tions in coordinate and momentum spaces share similar
features. Nevertheless, the difference in the projections
of classical (real-valued) and quantum (complex-valued)
functions onto coordinate and momentum spaces causes
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the classical distributions in Fig. 4(b) to differ from their
quantum counterparts in Fig. 3(c).

The current algorithm provides us, for the first time,
with a novel opportunity to generate information about
quantum wave-packet dynamics in phase space with the
possibility of (i) projecting it onto either position or
momentum space, or (ii) comparing it directly to the
classical dynamics of the same probability distribution.
Time evolution is accomplished within the Schrodinger
picture; therefore, unlike the Wigner [5] or Husimi [6]
distributions, phase information is preserved during trans-
formations between phase space and position or momen-
tum space. Finally, this algorithm implements a self-
consistent theoretical framework for generating quantum
dynamics completely in phase space, without recourse to
the position or momentum representations, and allows
one to contrast this dynamics with the classical dynamics
of the same initial distribution in phase space. As a tool
for gaining insight into the correspondence between clas-
sical and quantum mechanics, it might prove extraordi-
narily useful.
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