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We study the Hamiltonian of a two-level system interacting with a one-mode radiation field by means

of the Wigner method and without using the rotating-wave approximation. We show that a phenomenon
of collapses and revival, reminiscent of that exhibited by the Jaynes-Cummings model, takes place in the
high-coupling limit. This process appears as irreversible or virtually reversible, according to whether the
semiclassical regime is chaotic or not. Thus we find a new mechanism for dissipation in the quantum
domain.

PACS numbers: 05.45.+b

In the past decade there has been a steadily increasing
interest in the phenomenon of "collapse and revival" of
quantum state vectors [1-5]. Cummings [6] noted in his
investigation of a two-level system coupled to an elec-
tromagnetic field [7] that over a relatively short time in-
terval the initial wave function collapses as an exponen-
tial in t, i.e., a Gaussian decay. A transparent discus-
sion of the physical origin of both collapses and revivals is

given by Phoenix and Knight [8], who used the concept of
entropy to describe the appearance of disorder resulting
from the interaction between the two-level system and the
electromagnetic field in a coherent state; i.e., the field can
be represented as the coherent superposition of an infinite
number of discrete photon states.

All these investigations have been carried out by apply-
ing the rotating-wave approximation (RWA) to the
spin-boson Hamiltonian:

P = ——,
'

toper, + (g/420)cT" (b+b )+ ftbtb,

where b (bt) is the annihilation (creation) operator with
the commutation relation [b,bt] =1, and (b+bt)/
420 =q and i JQ/2 (b —b) =p are the coordinate and
momentum operators of our oscillator (coherent field)
with frequency O. The system of equations generated by
(1) supplemented by the RWA is usually referred to as
the Jaynes-Cummings model (JCM) [7].

It has been pointed out that the suppression of the
RWA has dramatic consequences on the semiclassical be-
havior of the above system and that the inclusion of the
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Like the density matrix, pit describes an ensemble of sys-
tems and (2) describes the evolution of that ensemble in

phase space. Note that the Wigner formalism was
developed precisely to allow the introduction of a phase
space in quantum mechanics. The initial state of the en-

counterrotating terms neglected by the RWA back into
the equations of motion can produce chaos [9,10]. The
purpose of the present paper is to show that this semiclas-
sical chaos is a new source of quantum irreversibility,
with properties very distinct from those of the JCM [8].

To establish this crucial property, we adopt a suitable
generalization of the Wigner method [11] and write the
equation of evolution for the Wigner quasiprobability:
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calculated using (7) with the theoretical prediction of
Bonci, Grigolini, and Vitali [4], which we refer to as
BGV. The BGV prediction is closely related to the well-
known treatment of quantum dissipation of Leggett et al.
[131. According to the detailed analysis of Vitali and
Grigolini [14], these linear theories miss the reaction field
and the nonlinearity associated with it, thereby suppress-
ing semiclassical chaos [9,10]. Figure I refers to a fre-
quency mp so weak as to make the reaction field negligi-
ble. This explains why the BGV prediction coincides with
the exact, i.e., quantum-mechanical, result of the numeri-
cal ca1culation. It is also remarkable that a satisfactory
agreement with these two calculations is obtained by
averaging over the semiclassical trajectories using (6).
This is so because the QGD, neglected by the dashed
curve in Fig. 1, is suppressed by the linear nature of the
condition examined here.

According to the BGV interpretation, the collapse ob-
served in Fig. 1 depends on a "multiplicative stochastic"
process formally equivalent to Kubo's stochastic oscillator
[15]. Semiclassical trajectories with different initial con-
ditions are characterized by slightly different "oscillation
frequencies" in the nonchaotic case and the interference
between these different members of the ensemble pro-
duces a Gaussian-like decay of the average spin- & opera-
tors [15]. This functional form of the collapse was also
obtained by Kubo for his stochastic oscillator, and, as we
mentioned earlier, by Cummings for the JCM. Unlike
the Kubo oscillator, where the stochastic coefficient (fre-
quency) is based on random fluctuations external to the
system, in the present model the multiplicative Auctua-
tions are generated by the dynamics of the single quan-
tum oscillator. This is the reason why the process is not
genuinely irreversible and collapses are followed by re-
vivals.

Figure I (b) shows that the entropy S of (7) monotoni-
cally increases until it reaches its maximum value at the
end of the collapse process. This means that disorder in-
creases during the collapse process. This is reminiscent of
the entropy increase during the 3CM collapse [8]. How-
ever, since in this high-coupling condition the revivals are
much more regular than in the JCM case, we have the
correspondingly reversible behavior of the entropy 5 at
each unit of time as shown in Fig. 1(b).

Let us now set cop=A =2m, while leaving unchanged
all the other parameters, and first turn our attention to
the semiclassical trajectories generated by the dynamic
equations corresponding to L,~„. „. In accordance with the
results of Refs. [9,10], we find that the individual semi-
classical trajectories can exhibit chaos for specific values
of the system parameters. Using the method of Benettin,
Galgani, and Strelcyn [16], we evaluate the Liapunov
coeScient X, which in the case of Fig. 2 turns out to be of
order unity. On the other hand, we have seen that the
generalization of the Wigner theory leads us to conclude
that single trajectories do not have a direct physical inter-
pretation; only quantities averaged over the initial condi-

tions (5) are physically significant. By definition, chaotic
trajectories that are initially close together diverge ex-
ponentially in time. Thus the decorrelation mechanism is
given by the internal dynamics of the system rather than
being externa1 as in the stochastic fluctuations of Kubo.

We see in Fig. 2(a) that at the end of the standard re-
laxation process the mean value (cr, (r)), evaluated with
the QGD neglected, reaches a sort of thermodynamic
equilibrium and that all revivals after the first are
suppressed (dashed curve). It is clear that the collapse is
now irreversible due to the subsequent incoherence of the
chaotic trajectories. Signs of the original revivals are still
visible in the full curve corresponding to the exact calcu-
lation, i.e., including also the action of the QGD (solid
curve). We note that, correspondingly, the solid line of
Fig. 2(b), denoting the entropy S, monotonically ap-
proaches a plateau as it should for an irreversible process.
However, in the vicinity of the first revival, a ghost is ob-
served in the form of a sudden decrease in the entropy.
This dip indicates again a competition between the ir-
reversible eA'ects of chaos and the reversible eA'ects of
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FIG. 2. In all curves g=20, coo=n =2rr, and (n) =IO. (a)
The solid curve is the prediction from the numerically integrat-
ed equations of motion. The dashed curve is the average z com-
ponent of the spin calculated by neglecting QGD. (b) The solid
and dot-dashed curves denote the entropy of the spin calculated
numerically, with an initial condition in a coherent state and in

the eigenstate ]in), with n =10, respectively. The dashed hor-
izontal line is the theoretical maximum value of the entropy.
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QGD, both of which are in the exact calculation. We are
led to conclude that the QGD mechanism reacts against
the spreading of chaotic semiclassical trajectories and
tends to recover, at least in part, the original correlations
just as it did for thermal I]uctuations [11].

We note that the behavior of the entropy in Fig. 2 is
reminiscent of that in Fig. 10 of Ref. [8]. In both cases
the entropy increases initially, to reach its maximum pos-
sible value around the collapse time, then it exhibits some
oscillations and dips a few times, but on the whole there
seems to be a trend for the entropy to increase. This ap-
parent similarity (actually the sequel of JCM collapses
and revivals take place with a frequency proportional to
the interaction strength, whereas the leading frequency of
the processes here under study is the field frequency 0)
might imply that irreversibility has the same root in both
cases, which would be the wrong conclusion. It is true
that the adoption of a coherent state makes the process of
collapse depend on the conventional source of irreversibil-
ity, that being the infinite number of photon states in the
"heat bath. " However, this contribution to irreversibility
can be totally quenched by adopting an initial condition
with a single photon in a single state [dot-dashed curve in

Fig. 2(b)1. Within the RWA this initial condition would
result in the reversible Rabi oscillation behavior. In con-
trast, we see here from the dot-dashed curve in Fig. 2(b)
that the entropy exhibits a distinctly irreversible behavior,
with ghosts of decreasing intensity at t =2trn/11, with
n =1,2, . . . . These ghosts are totally inhibited if the
QGD is neglected, thereby confirming again that the
QGD competes with the irreversibility generated by semi-
classical chaos.

We conclude by contrasting the above results with the
traditional picture of a quantum system coupled to the
heat bath. In a sense the JCM dissipation [8], which im-

plies the interaction between the two-level atom and a set
of an infinite number of quantum states (necessary to
reproduce the oscillator in the coherent state), belongs to
this traditional picture. Quantum dissipation in these
earlier models arises from the infinite numbers of degrees
of freedom in the bath, which for technical reasons is

generally treated as being linear [171. In this paper, how-

ever, dissipation is found to be a quantum manifestation

of the chaos in the semiclassical trajectories. It has noth-
ing to do with a heat bath and is a consequence of the
nonintegrability of the spin-boson Hamiltonian. Thus,
one kind of quantum irreversibility is herein not a many-
body or a many-state effect, but rather an effect of chaos,
a mechanism heretofore not identified.
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