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Dynamical Localization in Josephson Junctions
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A novel quantum efTect, dynamical localization, is predicted for periodically current-driven Josephson
junctions: the quantum-mechanical decrease, as opposed to the classical increase, of the intensity of
voltage fluctuations with increasing driving amplitude.
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In the last decade it has become possible to fabricate
Josephson junctions su%ciently small that quantum
effects due to the quantization of the charge of Cooper
pairs and the canonically conjugate variable, the phase
difference p across the junction, become, in principle, ob-
servable. The quantization of charge in units of e has al-
ready been observed in normal junctions via the Coulomb
blockade [1]. The quantum nature of the phase has been
observed via the quantized energy levels in Josephson's
cosp potential [2], and, more indirectly, via quantum tun-
neling in the biased cosp potential at very low tempera-
tures [3]. Some quantum effects in classically chaotic
Josephson junctions have been analyzed theoretically in
Ref. [4].

In the present Letter we wish to discuss a new and
different effect based on the quantization of p, namely,
dynamical localization. This effect has been discussed in
model systems in "quantum chaos" like the kicked rota-
tor [5] and atomic [6] and molecular [7] models. Furth-
ermore, there is experimental evidence [8] that it occurs
in hydrogen atoms in Rydberg states driven by a strong
microwave field. According to theory it should appear,
under appropriate conditions, in periodically driven quan-
tum systems which are chaotic in their classical limit.
Here, we will specify the appropriate conditions for
current-driven Josephson junctions and show theoretically
and by numerical simulation that the effect leaves an
unambiguous footprint in the dependence of the intensity
of the voltage fluctuations on the amplitude of the driving
current: Classically, this intensity is predicted to rise
linearly with the current amplitude. Quantum mechani-
cally, we predict the intensity of voltage Auctuations to
decrease in inverse proportionality to the current ampli-
tude, above a certain current threshold. The observation
of this effect in an array of junctions seems possible. If
so, it would not only give a further demonstration of the
quantum nature of p, but would also be a much-sought-
for experimental test of some basic ideas of the field of
quantum chaos.

We will consider a small (capacitance C=10 ' F)
dissipationless Josephson junction driven by an ideal
external periodic current source I=IosinAt. The leads
from the source are regarded as an internal part of the
junction. To avoid dissipation the temperature must be
very small compared to the gap, the impedance of the

leads has to be kept su%ciently small, and the output
power must also be kept low. The latter requirement will
be specified more concretely at the end, and is probably
met best in an experiment using a large array of indepen-
dent junctions in series. The Hamiltonian is that of a
periodically driven pendulum [9] and can be written in
the form

H =p /2 —k cos(p —Xsint),

where time is rescaled to make 0 =1, and p is related to
p via P(t) =p(t)+(2el /o6CA )sinAt. The momentum

p =& =2eV/It t1 is connected with the total voltage drop
V, across the junction by V, =V —(Io/CA)cosset. The
two parameters k =2elj/ACE and X=2elo/ACE de-
scribe the classical system. IJ is the amplitude of the
Josephson supercurrent I&=IJsinp. The quantized sys-
tem contains a third dimensionless constant k =(2e) /
@CA via the commutator [p, p] = —ik In ou. r units k
plays the role of Planck's constant and corresponds to one
quantum of voltage 2e/C.

The classical Hamiltonian (1) was analyzed in Ref.
[10]. The basic phenomenon described by the Hamiltoni-
an is the crossing, twice during each period T =2tr/0, of
the fundamental resonance at which p =&=accost. The
cases of slow (X/k (1) and fast crossing (X/k» I, i.e. ,
Io» IJ) may be distinguished [10,11]. We will consider
here only the case of fast crossing, where it is possible to
neglect the rate of change (=k) of the pendulum fre-
quency (=Jk ) compared to the rate of displacement
(=X) of the fundamental resonance p =accost [11]. Out-
side each crossing the junction does not interact eff'ec-

tively, but each crossing acts like a sudden kick which
randomizes p (mod2tr) and changes p by Ap= —J2tr
x (k/ Jk)sin(pe tr/4), where the sign depends on the
direction of the passing of the resonance. The system can
therefore be described, in reasonable approximation, by
the standard map [10] of the form P =p —2Jn(k/
JK)sing, P=p+2trP per period T=2tr, and from this
description the classical-chaos border is derived as
k & atra/40. As a crossing of the resonance occurs only
for ~p ~

(X, chaos is essentially restricted to this domain.
We shall require a large chaotic domain k » 1, i.e.,
Ip» A, CQ /2e. In the chaotic domain p diffuses with the
diffusion constant D =2(hp )/(2tr/0), where (Ap ) is the
mean square of the change of p per half period. The
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above rough estimates yield D=k /X, but a more quantt-
tative estimate D = (k /k)F(4' k/Ctrl) with known
function F of order 1 is available [12] if necessary. Thus,
classically the normalized voltage fluctuations p spread
diffusively over the entire chaotic domain Ip I

(X. Hence
/ 2) [/2 I /voltage fluctuations with root mean square iV &

J3CQ are classically predicted.
Upon quantization, the classical chaotic diA'usion, for

the standard map, is replaced by dynamical localization
via a quantum-mechanical destructive interference of the
amplitudes for transitions with large changes of the quan-
tum number of p [13]. This means that the Floquet
states y, in the In) representation, with p In) =knIn), fall
off exponentially like Iy, I

—exp( —In
—n„I//l), where t is

the wave-function localization length. It is given in terms
of the diA'usion constant D~ of p over one period,
D~ =2nD, by l =D /Zk . An initial state, like the groundP
state of the undriven Josephson junction, which is local-
ized near n=0 and given by a linear superposition of
about l Floquet states, first spreads by classical diAusion
and then develops into an exponentially localized distri-
bution

I yI —exp( —
I n I/lD) with a localization length

ID=21 [14]. Thus, Auctuations of the excess voltage are
quantum mechanically reduced to (p ) —klD//J2 or
(V ) ' = [J2trh/(2e) ]IJ/Io. For fixed external frequen-

cy, they decrease inversely proportionally to Io, contrary
to the classical case. This finding provides us with a clear
signature of the eff'ect which should be observable if the
classical restriction of the fluctuations by the width of the
chaotic domain (=A/J3) is larger than the quantum re-
striction due to dynamical localization (=Italo/J2), i.e. ,

Io) IJ(46trACn) ' /2e
In order to demonstrate the eA'ect we have performed

some numerical simulations. For simplicity we discre-
tized in time and replaced the Hamiltonian equations fol-
lowing from Eq. (1) by a discrete, periodically time-
dependent, two-dimensional map, 300 iterations of which
correspond to a single period 2'/0, and we used the
quantum version of this map. As a consequence of this
discretization the spectrum of resonances of the continu-
ous system is repeated on the frequency axis with a period
3000. As we restricted ourselves to values k ~ 130 the
chaotic domain Ip I

(k does not overlap with its repeated
copies and the discretization therefore does not
significantly aA'ect our results. The saving of computer
time, on the other hand, is enormous. In Fig. 1 we
present an example of (hn ) versus time as measured in

periods of the external current for A, =85.0, k =15.0, and
k =1.58. The initial sharp rise of (An ) from the initial
state at n =0 by classical diAusion is followed by a local-
ized regime where (hn ) changes due to random beatings
of a finite number of Floquet states. We have found
cases where these beatings can contain very long periods
which may be caused by interferences between nearly de-
generate pairs of doubly humped states, e.g. , states local-
ized symmetrically around positive and negative values of
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FIG. 1. Mean square of the number of occupied levels of the
cosine potential vs the number N of cycles of the external
current for k =85.0, k =15.0, and 4 =1.58.
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FIG. 2. Logarithm of the time-averaged occupation proba-
bility corresponding to Fig. 1. Dashed lines give the border
In I

=k/k' of the classical chaotic domain and the exponential
falloA' ~ith the localization length lg.

n, which occur due to the p —p, P
—

P, t t+&/&
symmetry of the system. In Fig. 2 the time-averaged lo-
calized probability distribution over the eigenstates of p
which has established itself towards the end of Fig. 1 is
shown in a semilogarithmic plot. The dashed lines give
the classical border In I

=X/k and the exponential fall-
off with the theoretically estimated localization lengtth l
in good agreement with the numerical result.

In Fig. 3 a numerical example of our experimentally
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FIG. 3. Root mean square of the number of occupied levels

versus the normalized amplitude X of the driving current for the
same values of the parameters k,k as in Fig. 1. Classical re-
sults, indicated by e's, are joined by a dashed line. Another
dashed line gives the analytical result for the quantum regime.

accessible prediction is presented —the root-mean-square
excess voltage fluctuations, expressed in fluctuations of
the quantum number n, versus the amplitude of the exter-
nal current, expressed in scaled form by X. The values for
k and k are the same as in Figs. 1 and 2. We also present
points of a classical calculation for the same parameter
values, joined by a dashed line for convenience, and a
dashed curve giving the estimate An =lD/J2= ink /

provided by localization theory. In agreement with
the theoretical estimate the transition from classical to
quantum behavior takes place at Xq

= (46zk) ' /k '

=33. We also tested the theoretically predicted scaling
of the localization length with 4, according to which
h, nfc =const, by further numerical calculations for fixed
X=85.0, k=15.0, and obtained 10 h,~ =7.3, 7.0, and
7.6 for 4 =1.58, 1.18, and 0.988, respectively, in reason-
able agreement.

Let us now summarize the experimental conditions un-
der which the effect shown in Fig. 3 should be observable.
If we wish to observe the classical to quantum crossover,
we must satisfy the condition of fast crossing of the reso-
nance Ip » IJ already in the classical domain X/W3

&klD/J2, i.e., for Ip&IJ(46zA, AC)' /2e. These con-
ditions are compatible only for 4/J6n«1. For example,
for a junction with C=10 ' F, JJ =10 A, driven with
a frequency 0/2+=10' Hz, we have k=0.8, 4=0.16,
and X=0.8Ip/IJ. The amplitude of the driving current
should then be varied in the range 0.1-10 pA, the cross-
over between the classical and quantum domain occurring
at about 0.7 pA.

The predicted effect rests entirely on coherence, and

therefore dissipation has to be kept sufficiently low. As
the localization needs about lD/2=+ACIJ/Ip(2e) cycles
of the external field to establish itself (cf. Fig. 1) the
quality factor of the driven junction (including the leads
from the current source and the energy loss due to the
measurement performed) must be large compared to lD/2
[15]. For the example given above lo =28 at the classical
quantum crossover and lD & 28 in the quantum regime.

The influence of the impedance due to the leads from
the current source and the voltage measurement can be
significantly reduced by using an array of Xo Josephson
junctions in series. For example, if P, is the minimal
detectable power, the rate constant R at which energy
must be extracted is limited from below by R & P, /
(NpC(V )/2). Estimating (V ) by the localization length
and requiring the quality factor Q = t1/2rrR to be larger
than lii/2, we obtain the condition Np»P, 4eIp/Ii D,IJ.
For example, in the example given before, for P, =10
erg/sec and Ip/IJ =10, we find Np»10 . This value
could be reduced by choosing a junction with larger IJ.
However, then the localization length, and hence the re-
quired quality of the oscillator, increases quadratically
with IJ and restrictions on the losses not caused by the
measurement, e.g. , the losses caused by the leads from
the current source, become more severe.

Furthermore, the temperature T has to be su%ciently
low such that quasiparticle tunneling is negligible, and
such that thermal excitations of p states can be neglected,
i.e., kIiT & C(hQ/2e) 4 /2, which is the energy spacing
of the lowest lying p states. In the example given before
this amounts to T &0.04 K.

In summary, we have shown by a simple theory based
on the standard map and direct numerical simulation of
the Schrodinger equation that dynamical localization ap-
pears as a quantum effect in ideal chaotic current-driven
Josephson junctions. We have also examined conditions
under which this effect might be observable experimental-
ly in an array of real junctions.
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