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It has been often claimed that the formation of a Kondo ground state requires a minimum particle ra-
dius of r)&gn =hvF/6, where h=keTg is the width of the Kondo resonance. We suggest that this
minimum size is an artifact of the high symmetry of the sphere for which these calculations have been
performed. A similar argument applies to other resonances. This question of minimal size is investigat-
ed for a Friedel resonance in two geometries, a sphere and a parallelepiped with a noninteger ratio of its
edge lengths. A numerical calculation shows that the minimum linear size of the sample can be much
smaller than gR.

PACS numbers: 72. 10.Fk, 71.55.Dp, 75.20.Hr

Wilson [1] found in his renormalization approach to
the Kondo ground state that the critical transition to an
infinitely strongly bound singlet state occurred only when

the radius of his sample became larger than gR =ltt vF/6,
where A=kttTit is the width of the Kondo resonance.
This criteria has been often recounted since then and ac-
cepted by a majority in the solid-state community (see,
for example, [2]). In a recent publication by Chen and
Giordano [3] the authors believe that they found experi-
mental evidence for this criteria. They investigated the
Kondo eff'ect in thin films and found a change of the loga-
rithmic anomaly when the film thickness was reduced
below the critical length scale hatt.

The essential physical origin of this critical size is the
fact that the Kondo eAect creates a resonance at the Fer-
mi energy whose width is of the order of h, =kg Tg. The
electrons can only feel this resonance when their energy
spacing is suSciently small so that a wave packet with an

energy width much less than k&T& can be constructed
which can test the width of the resonance.

If the Kondo impurity is positioned in the center of a
sphere then it couples only to the free-electron states in

the sphere with a fixed quantum number of angular
momentum. (In the theoretical model calculation one
generally considers the quantum number zero while for a
realistic impurity one has instead the quantum numbers
two or three. ) The energetic distance of these states is
6= hvFtt/R, where R is the radius of the sphere. All the
other states with different angular momenta do not cou-
ple to the impurity. The high symmetry of the sphere
dramatically "dilutes" the states which couple to the im-

purity. The fraction of these states is very small, only
about N, where 2N is the total number of electrons.
If we have, for example, a sphere with 10 electrons only
about 10 electrons interact with the impurity. In a less
symmetrical geometry the impurity couples to a much
larger fraction of states. For example, in a perpendicular
parallelepiped one out of eight electron states couple to
an impurity located in its center. This means that in a
parallelepiped one needs only a total of 10 electrons to
obtain the same number of coupled electrons as in a
sphere with 10 electrons. Therefore one expects that the

g (e) =—,, a= (Vp2i, )gp,
1 h,

tt (e —ep)'+A'' (2)

where go is the density of states of the host for one spin
direction and the angular momentum l=0.

For this resonance problem one has the same require-
ment that the size of the sphere has to be much larger
than the "resonance length" gtt =lttvF/h. Only then are
there enough states within the resonance width to build a
wave packet with an energy width less than the reso-
nance.

This means that with respect to the minimal size of the
sample we have an analogous situation for the Kondo
eff'ect and the much simpler Friedel resonance. Therefore
the Friedel resonance is a good model to check whether
this minimal sample size is real or only a theoretical ar-
tifact due to the high symtnetry of the sphere (which
makes the theoretical investigations simpler).

The purpose of this paper is to compare the inAuence of
sample size for two geometries, the sphere and the per-
pendicular parallelepiped with a noninteger ratio of edge
lengths. (In the following we call the perpendicular

minimal sample size of the Kondo eA'ect is much smaller
for a parallelelepiped and other geometries than for a
sphere.

With respect to the minimal sample size the Kondo
effect is not different from a simple Friedel resonance in

the center of a sphere. Let us consider the following situ-
ation in which the conduction electrons pk are coupled to
a localized state wp with the energy ep. The pk are radial
wave functions with angular momentum l =0. The reso-
nance state po is orthogonal to the pk. The system can be
described by the Hamiltonian

H =get, ct, ct, +epcp cp+g [Vpkcp ck+ Vpt, ck cpl .
k k

The ct„ck* are the annihilation and creation operators of
the radial wave functions. The Vok are the matrix ele-
ments between the resonance state and the pk. Accord-
ing to Friedel [4] and Anderson [5] this coupling yields a
broadening of the resonance state with a smeared density
of states,
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parallelepiped a "brick. ") The above Hamiltonian (1)
describes both systems. The essential diAerence is that
the value for Vog and the level separation is difI'erent in

the two geometries. We compare both geometries con-
taining 2Ã electrons. The volume of the brick and the
sphere is V =2ND/z, where 0 is the atomic volume and
z is the valence of the metal. The square of the matrix
elements is IVOI, I =IVDI 0/Ipi, I (i.e., Vo is calculated
for the atomic volume 0).

We have for the brick the quantization of the wave
vectors k, ; =n, rr/L;, and the density of states per spin is,
in an average, g(e) =3N/2e. However, only the states
with odd quantum numbers have a finite amplitude,
Ipl, (0) I =(8/V) ', at the center of the brick. As a
consequence the effective average level spacing is 6'.„
=16'/3N, and the effective matrix element is IVoqI
=gI V, I'z/2N.

On the other hand, one has for the sphere the quantiza-
tion of the radial wave number k, =n, x/R; the level spac-
ing is 8=6k+/mR =e/2n„, and the wave function at the
origin is Ipk (0) I =k„/2+R. This yields the effective ma-
trix element IVOI, I =IVOI 3z/2n, . The radial quantum
number at the Fermi energy is n„= (9N/2' ) '

In both cases we find for 6 the value 6/ep=3zzIVo/
eF I /4. In the numerical calculation we take as the input
the number of electrons and the width of the resonance in

units of the Fermi energy 6/eF. All other parameters fol-
low from this input or cancel in the calculations.

The new energy eigenvalues E„of the Hamiltonian
fulfill the relation

a function of energy describes the broadening of the reso-
nance state; the occupation increases with energy E„as

(no(z) l = Z 1

E. (E I&.I'
(5)

The condition that the radius of the sphere should be
much larger than gR translates into a condition for the
number of electrons: N, ~&&(eF/A) . Since we choose
A/eF =0.01 we find for the sphere that the number of
electrons should be much larger than 10 . An additional
factor of 10 in the linear relation, which translates into a
factor 10 for the number of electrons, is required to get
a reasonably smooth occupation curve for the sphere.
The results for a sphere with 2Ã =10 electrons is plotted
in Fig. 1 as the staircase curve.

For the brick we choose a ratio of corner lengths of
1:1.002:1.009. The purpose of this ratio is to avoid de-
generacy of energy eigenvalues. This is the closest ap-
proach to an irregular body which we can achieve with
the simple geometry of a brick. The full curve in Fig. 1

shows the occupation of the resonance for a brick with
only 5x10 electrons. This curve is so close to the occu-
pation for an infinite sample that we omit the curve for
the latter one.

The main result of this evaluation is that a brick with
5&&10 electrons agrees as well (or even better) with the
asymptotic result as does a sphere with 10 electrons.
Clearly the critical size for the brick is much smaller than
that of a sphere of IOgg.

Besides the occupation one also likes to examine the
thermodynamic properties of the resonance. As an exam-
ple, we calculate the contribution of the resonance to the
electronic specific heat. The resonance should contribute

I vox I'
(E„—ek) '

Equation (3) was solved numerically. The resonance
width was chosen as 5/eF=0. 01. From h and 8 one ob-
tains the matrix element VOA. We set VOI, =0 outside of
the energy range t.F ~ 6h, . The resonance energy is posi-
tioned exactly at the Fermi energy.

First we consider an artificial spectrum with equal
spacing. After determining the new energies one obtains
the new density of states from the inverse of the new level
spacing. The additional resonance density of states nicely
follows Eq. (2). [As a consequence of the finite-energy
range eF ~66, the resulting resonance width h, is 13%
larger than Eq. (2) predicts. ]

For nonequal level spacing the definition of gR(e), the
change in the density of states, is more diAicult since the
"unperturbed" density of states is dramatically Auctuat-
ing. However, the "occupation" of the resonance state as

parallelepiped

8Aefg Y

I

EF+2k

I IG. 1. The occupation of the resonance as a function of
temperature. The staircase curve represents a sphere contain-
ing 10 electrons and the other curve, a brick with 5x 10 elec-
trons.
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since only one k and one k~ quantum number are occu-
pied and the contribution of the z component to the ener-

gy yields the same level spacing as the k, states in the
sphere. The difference between the bar and the sphere is
that in the latter only the fraction n„/N, i couples to the
impurity. The same applies for the two-dimensional case
where only one dimension is restricted. Therefore the ex-
treme case of a monolayer yields a full resonance (with a
different A).

I believe that all the above conclusions apply also for
the Kondo effect. Unfortunately, considering the com-
plexity of the exact solution of the Kondo problem [7,8],
as well as its numerical solution [I], it appears quite hard
to perform a similar evaluation for the exact Kondo reso-
nance. However, one may give the numerical solution of
Wilson the following interpretation: As a consequence of
the exchange interaction the electron system forms a lo-
calized state, in Wilson's notation the state fo. This state
forms a singlet state with the impurity S+s ——S—s+,
where 5+ represents the impurity spin up and s the fo
spin down and vice versa. The resonance state is the
unoccupied spin component of the state fo, which is cou-
pled to the extended (quasifree) electron states. This
coupling causes a broadening of the resonance state. This
description is actually derived in more detail in the
"slave-boson" model of the Kondo problem (see, for ex-
ample, the review article [9]).

The requirement that the radius of the sphere R is

much larger than gR, i.e., the level spacing for the cou-
pled 1=0 states is much less than A=kttTtt, enters the
Kondo problem at two points: (i) The formation of the lo-
calized state fo requires a sufficiently small level spacing
8 on the energy scale of 6 and (ii) the extended states
smear the resonance state only suSciently smoothly when
b«h.

If we assume in accordance with the majority of
theoretical papers that the Kondo impurity has a 6-like
exchange potential, then it couples in perfect analogy to
the Friedel resonance to all standing waves in the brick
with noninteger quantum numbers. Our conclusions ap-
ply therefore also to the Kondo effect: The critical sam-
ple size can be much smaller than 10(R. The only re-
quirement is that the level spacing of the extended states
is much smaller than h, =k~T~.

It is often argued that the magnetic moment requires a
screening spin cloud with a radius of, at least, gR, or oth-
erwise one has an incomplete screening of the impurity
spin. If the resonance state fo is constructed from the
eigenfunctions of the brick (or any other body form) and
the impurity forms a singlet state with fo, then this
yields, of course, a perfect screening of the impurity spin
within the surface of the body. There is no loss in the
screening cloud.

There is an argument of Nozieres [10] which, if one in-
terprets it appropriately, confirms this conclusion. No-

zieres points out that within the radius gR of a Kondo im-

purity one can place (gttkF) additional Kondo impurities
and all of them will find their screening electron because
the s electron of one impurity is (almost) orthogonal to
the s electron of the other impurities, even when their dis-

tance is within hatt. (While Nozieres uses (tt =AvF/4, I
obtain from the numerical evaluation that one needs at
least another factor of 10 in the characteristic length to
obtain a reasonable resonance. ) As a consequence, a sin-

gle impurity needs N =(10eF/d) electrons in a sphere to
develop the Kondo singularity. However, it can share its
volume with (10kFI,"tt ) = (10eF/6) other impurities.
We might interpret this result such that the number of
electrons which one needs per impurity to obtain the
Kondo effect is just 10eF/A. This means for kttT~=A
=eF/100 that one needs a volume with 10 electrons for
a single impurity but one can dissolve in this volume an
additional 10 impurities and each individual impurity
needs only 10 electrons to compensate its moment.
From this point of view it might appear less surprising
that in a brick 5 & 10 electrons are needed for the com-
pensated ground state (the additional factor is needed be-
cause the energy spectrum of the brick has a strongly
varying energy spacing).

This agrees well with the results of an experiment
which our group performed a few years ago [11]. In this
experiment a thin sandwich was condensed consisting of a
30-atomic-layer-thick Mg film, which was covered with
0.005 atomic layer of Fe. Then the Fe was covered in

different steps with increasing thickness of Mg. In each
step the magnetic scattering time was measured by means
of weak localization. The dephasing rate did not change
with the thickness of the second Mg film (after the transi-
tion from a surface to a bulk impurity was completed).
This indicates that the formation of the Kondo singlet
state and the screening of the magnetic impurity was not
hindered by the thin film.
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