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The low-temperature phase of a model of pinned, two-dimensional flux lines is analytically shown to

be g1assy. Typical energy barriers L diverge as (lnL) 't2 as the length scale L ~. This implies a
voltage-current relation of the form V=C~Iexp[ —C2[ln(Io/1)l ' ]. The growth velocity Vo of the sur-
face of a disordered crystal is given by Vo =C3hpexp[ —C4[ln(hp, /Ap)I 't'[, where hp is the crystal-
liquid chemical-potential diA'erence. Similar results hold for 2D charge-density waves, if dislocations in
the charge-density wave are ignored.

PACS numbers: 74.60.0e

where C=O(ka) is a nonuniversal constant, and TG the
glass transition temperature.

Assuming that the energy barriers that the system en-
counters awhile growing are of order of the typical barriers
given by (1) leads to a voltage-current law of the form

r i " ]/2i
A(T) Io

V =ROI exp' —a ln
T I (3)

The Abrikosov flux-lattice state in a perfectly clean
material is not superconducting [1]; it has a nonzero
resistance R at small current I due to motion of the flux
lines. R remains finite (though very small) in dirty su-
perconductors undergoing [2] activated flux creep. A
new phase of pinned Aux lattices called the "vortex glass"
which is a true superconductor has been proposed [3-5],
and possibly seen experimentally [6].

Pinning destroys both translational [7] and orientation-
al [8] long-ranged order for spatial dimensions d &4.
But the vortex glass has [3-5] "spin glass" order, in
which the Aux lines lock into some (random) low free-
energy configuration. As in spin glasses [9], excitations
of linear spatial extent L out of this state are assumed to
typically cost an energy Er(L) rxL as L ~, with 8
( & 0) universal. The assumption that Er(L ~)
implies [10] that the resistance R—:limI odV/dl =0.
Numerical [11] and experimental [6] evidence favors this
scenario, but convincing analytic arguments that
Er(L ~)~ ee have been lacking [12].

This paper provides such a demonstration for a model
of randomly pinned Aux lines in d =2, introduced in Ref.
[3]. This model describes [13] a thin film of supercon-
ductor sandwiched between two bulk superconductors in

an applied magnetic field H parallel to the film that
satisfies H,"l' &H &H, l"'", so that flux lines penetrate
only the film. Specifically, I find that in the low-tem-
perature (glass) phase of this model

E (L) =A(T) [1n(L/a)] '"
as L~ ~. The temperature-dependent prefactor in (1)
vanishes linearly as T T~ ..

(2)

where Ro, a, and Io are current independent, and
a=O(1). In the "film sandwich" geometry described
earlier, both the current density and the electric field are
normal to the film. This form (3) iinplies that R

limj Q—dV/dI=O, and leads to persistent current de-
cays with time in remnant magnetization experiments of
the form

I(t) =C3exp( —C4ln't) a: t

Equation (3) can be transcribed into the growth law
for the surface of a bulk-disordered crystal by replacing V
with the growth velocity V~ of the surface, and I with d p,
the chemical-potential difference between solid and liquid
[14]. This growth is much faster as hp 0 than that
predicted [15] for screw-dislocation-catalyzed growth
[VGcx:(&p) ]. The voltage-current relation for a ran-
domly pinned 2D charge-density-wave [16] (CDW) sys-
tem without dislocations [17] has the form (3) with V
and I interchanged.

I will now sketch the derivation of these results, begin-
ing with a review of Ref. [3]. The model describes a set
of thermally meandering, on average parallel, flux lines
with a finite line length per unit area pI in the plane, and
a finite line tension e, moving in a random potential. The
lines interact via some short-ranged, repulsive potential.

This problem can be mapped [3] onto the problem of
surface Auctuations of a bulk-disordered crystal [18].
That problem is described by the model [18,19]

H
H, = =„d r[ —,

' K~V—h~
—Vcos[2+h(r)+P(r)]],

B

where h(r) gives the local height of the crystal surface
above a reference crystallographic plane, and p(r) is a
quenched random variable that is uniformly distributed
between 0 and 2x at the pinning sites, and 0 elsewhere.
Tilted boundary conditions h (x =O,y) =0, h (x =L,y )
=OL, with O=pr, are imposed.

To see the connection between this model and the flux
line system, first consider its ground state in the absence
of disorder [p(r) =0 everywhere]. A straightforward
minimization shows that this ground state is a set of flat
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terraces in which h(r) =integer separated by uniformly
spaced steps parallel to the y axis of width w —(K/V) '

and step spacing 1=1/0. If we choose K and V such that
w =X (the London penetration depth), we can identify
the steps on this surface with the flux lines in the original
problem, because the structure, energetics, and density of
the two are essentially the same. In particular, the
ground states (uniformly spaced lines) are the same in

both cases.
Now consider the effect of the random phase p(r). If

the disorder is weak (i.e. , the density of pinning sites is
low) the local structure of the surface will remain, over
most of the surface, one of terraces separated by well-

defined steps. On the pinning sites, the cosine term in (5)
is forced away from its energetically favored value of 1 if
a terrace (region of h =integer) sits on rp. However, if a
step passes through rp, one can make a small adjustment
in the step's position such that h(rp) =integer —P(rp)/2tt
and thereby make the cosine take on its optimal value
there as well. Thus, the pinning sites attract steps, in pre-
cisely the same way that the pinning sites in the original
flux line problem attract the flux lines. The attraction is
short ranged (its range of order the step width w), and so
this model is in the same universality class as the original

r
n n

riDh. exp Z Hfh. ', hl ) .
a=1 a'= l

(7)

Performing the quenched average over P perturbatively in

V yields an effective Hamiltonian for the fields h alone
of the form [21,22]

flux line problem.
In this surface model, the growth velocity Vp is equal

to the rate at which steps pass a given point. In the su-
perconductor, the voltage V is proportional to the rate at
which Pux lines pass a given point. Thus, Vo (sur-
face model) CX: V(superconductor).

The model (5) is a Gaussian approximation to a ran-
dom field X-I model [20,211. The ensemble-averaged
free energy (F) = —kti T(lnz([p(r)] )), where the angular
brackets denote an average over the quenched random
variables [p(r)], determines its thermodynamics. The
quenched average (lnZ) can be evaluated by replicas; i.e.,
using the identity

Zn 1F = —kgT/im
n 0 Pl

to reduce (F) to the partition function for a system with n

identical replicas of h,

n n

H, = d r —,
' KQ~Vh,

~
+ —,

'
K2 g ~V(h, —hp)~ —U g cos[2tr(h, —hp)]

a aP= l a,P= 1

(s)

where Eq —=0 initially, but becomes nonzero under renor-
malization, and U—= V .

Standard renormalization-group techniques imply [20,
21] that the model undergoes an equilibrium phase tran-
sition at K=+. This is exact, since K is unrenormalized,
to all orders, in this model [21]. For temperatures above
this transition (K & tt), U renormalizes to zero and K2 re-
normalizes to a finite value. For temperatures below this
transition,

U(l ~) —=U~=, Cq =const,2 —2~/K
C2

Kz(l) =K, +CpU~i, C~, K, finiteconstants, (10)

where e is the renormalization-group rescaling factor.
This concludes the review of Ref. [3]. This paper will

demonstrate that the divergence of K2 leads to the
[ln(L)] 't divergence of energy barriers [Eq. (1)].

Thermally activated growth is dominated by those
paths through configuration space which encounter the
smallest energy barriers; here that path is the nucleation
of a "unit plateau, " i.e., a finite region within which
h(r) h(r)+1. Such an excitation is low in energy be-
cause the free energy (5), being periodic in h, is un-
changed by the creation of this plateau, except at its
boundary, which is a step.

I will assume that the free energy of this step scales the
same way with its spatial extent L as the free energy of a
single step of unit height forced into an L XL system by

(~F(0))= ,' KL'0'k, T—
exactly, both above and below Tg. Since K is unrenor-
malized, there is no signature of the glass transition in

(AF(0)). Equation (11) can be derived as follows: Upon
replicating, the tilted boundary conditions are reproduced
in each replica; i.e., h, (x =0) =0, h, (x =L) =OL, for all
a. One can now make a change of variables, h,'(r)
=h, (r) —ex for all a; since the K2 and U terms in H„de-
pend only on differences h —

hp, both are unaltered by
this change. In fact, only the K term is altered (by
—,
' Ke L ); this leads directly to [1S]

Zn(0)) =(Zn(0)) nKL 82/2 (i 2)

where Z"(0) is the partition function for n replicas, all
tilted by 0. This (12) implies (11).

Taking 0=1/L in (11) reveals that the mean free ener-

gy of a single step is finite, as L ~, in both phases.
However, itsPuctuations diverge, as will now be shown.

tilted boundary conditions h(x =0) =0, h(x =L) =OL,
with 0=1/L. (Here I have already made a change of
variables to shift away the tilt O=pL imposed by the
finite line density. ) The interest is in the change in the
free energy, i.e., AF(0) =F(0) —F(0). In this disordered
system, AF(0) is itself a random variable. Its mean is
[is]
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The mean-squared Auctuations in (5F(B) can also be obtained using (6):

([F(0)—F(O)]') = itm
n 0

z"(e) —z"(o)
n

= ltm, [(Z"'"'(0)&+(Z"+"'(O))—(Z"(0)Z"'(O)) —(Z"(O)Z"'(e))].(ktt T)'
(i3)

n, n' 0 flfl

Consider the terms (Z"(0)Z" (0)) and (Z"(0)Z" (0)). The first (second) of these can be thought of as the partition
function for an n+n' replica system, with n (n') of the replicas tilted by 0 and n' (n) of them untilted. Thus, diA'erent

replicas are now tilted by diferent angles, and hence the K2 and U terms in the free energy can come into play.
At high temperatures (K & tt), since U renormalizes to zero, (Z"(0)Z" (0)) can be calculated from the Hamiltonian

(8) with U=o. Since the desired average is the partition function for n+n' replicas, n tilted and n' not, I wi[[ shift
h h —Ox for the n tilted replicas alone. This changes only the K terms and those pieces of the K2 term with a one of
the n indices that is tilted and P one of the n' that is not. Thus

n n'

(Z"(0)Z" (0))=(Z"+"(0))exp — Ke L———, K2 g g 0 L
a=l P=l

(i4)

The double sum in this expression equals nn'0 L; inserting this and (12) into (13) gives

([F(0)—F(0)] ) =[4 K L 0 +K2L 0 ](kttT)

The first term in (15) is just the square of the mean [Eq. (11)] of it F(0); thus the second term gives the Auctuations
about this mean. Note that as L (x forgxed 0, these Auctuations become negligible relative to the mean; i.e., the sys-
tem is "self-averaging. "

Now turn to the single step case, 0=1/L. This gives the mean-squared step energy ((AFs) ) =( —,
' K +K2)(k&T)

which is finite in the high-temperature phase. This implies easy growth, or, in the superconducting problem, V=RI
with R finite as I 0.

Now consider the low-temperature phase. The renormalization group can be used to relate hF in a large system to
hF in a smaller system that is easier to analyze:

([I) F(B,L,K,K2(l =0) =O, U(1 =0))l ) =([I()F(BL/a, a, K,K2(l =[n(L/a)). , Ug)] ) . (16)

Since the right-hand side of (16) is evaluated in a finite system (so that no infrared divergences occur), the contribu-
tion of the U term to it will be negligible as U~ 0, which happens as T Ta . In this limit, (16) can be evaluated us-

ing Eqs. (10) and (15), giving

2([AF(0)] & —'KL 0+K 1 1
L L 0= —KL 0+

(ktt T) ' a
C[Ug L2

ln —L 0
2 a

(i7)

The system remains self-averaging for axed 0 as L
as was assumed in Ref. [18].

The single step energy, however, diverges. Taking
0=1/L in (17) gives

(~Fs& ([(i(F(0=1/L)l & ) 2 a)Us L
(ktt T) (ktt T) '

which diverges as L ~ like ln(L/a). Identifying Eq.
(18) as ET(L) gives Eq. (1); Eq. (9) for U~(T) then im-
plies Eq. (2). Given the form (1) for the energy barriers,
standard nucleation arguments [23,24] give the growth
velocity Vp of the crystal when that growth is driven by a
crystal-Auid chemical-potential diA'erence hp. Equation
(3) for V(I) follows from the resultant Va through the
mapping to Aux lines described earlier (in which Ap is re-
placed by the current density J).

I thank Matthew Fisher and Taku Tokuyasu for many
valuable discussions.
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