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Edge Localized Mode Activity as a Limit Cycle in Tokamak Plasmas
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A model of edge localized modes in tokamak plasmas is presented. A limit-cycle solution is found in

the transport equation (time-dependent Ginzburg-Landau type), which has a hysteresis curve for the
gradient versus the Aux. A periodic oscillation of the particle outAux and an L-H intermediate state are
predicted near the L-H transition boundary. A mesophase in spatial structure appears near the edge.

PACS numbers: 52.25.Fi, 52.35.Kt

Edge localized modes (ELMs) are a regularly observed
phenomenon characterized by the sudden drop of the
edge density or temperature with a burst of particles or
heat during the H phase in tokamak plasmas [1]. When
the density or temperature near the plasma edge exceeds
a certain threshold value, an L- to H-mode transition
takes place [2]. The ELMs usually follow the L-to-H
transition and show a variety in the magnitude and fre-
quency of the bursts and appear in some restricted pa-
rameter space of the H phase [1,3-8]. Their experimen-
tal characterization has recently begun [3,5]. The H
mode with small and frequent ELMs is a candidate for
standard operation in experimental tokamak reactors.
Research to obtain the ELM y-H mode by an external
control (e.g. , ELM in the JFT-2M tokamak [7]) is an ur-
gent task. This type of ELM, which we analyze here, has
the characteristics that the period and the duration of the
burst have similar values, as is shown in Fig. 1, and that
it appears near the L-H transition boundary [71. There
are other ELMs (called "giant ELMs") which are associ-
ated with large-amplitude bursts, and appear at some
critical pressure near the edge [1,3-81. Key physical
mechanisms for discriminating the various ELMs are not
yet known.

To explain the ELMs a comparison with critical-P
analysis due to the MHD ballooning mode [3,5] has been
applied. The analyses have shown that some ELMs (par-
ticularly the small and frequent ones) can occur far below
the critical pressure gradient. Resistive MHD analysis
[3] of a surface peeling mode may explain some ELMs;
however, the assumed current-pressure profiles are not
yet experimentally identified. There remains a question
for M H D models, since some ELM activities are insensi-
tive to the q value. Namely, the observed soft-x-ray
emission profiles of ELMs do not shift when the surface q
value is varied from 2.4 to 5.6 [2]. Therefore ELMs are
not considered to be located at a certain rational surface.
The period and duration of small and frequent ELMs are
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FIG. 1. Time trace of the H intensity of the "grassy" H
mode in the 3FT-2M tokamak. H, is given in arbitrary units.
For details of the discharge conditions, see Ref. [7].

left unsolved in the MHD analysis.
A model of ELMs as a cyclic oscillation between L and

H phases due to impurity accumulation has been pro-
posed [9]. Up to now, however, the itnpurity accumula-
tion has been considered to be an associated phenomenon
[3,10].

In this paper we propose a more complete model of
small and frequent ELMs, shown in Fig. 1. The L-H
transition has been observed to yield a hysteresis curve
for the thermodynamic forces (e.g. , the density/temper-
ature gradients) versus the associated Aows [2,3]. Previ-
ous theories [11,12] have predicted a sudden change in

loss Aux through the radial electric field (E„) bifurcation
[11] and the poloidal Aow bifurcation [12] near the edge.
Two models predicted a hysteresis curve for Aux versus
gradient, but with a diA'erent change in the sign of E„ for
given boundary conditions.
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The parameter e is a small coe%cient showing that Eq.
(2) has a faster time scale than Eq. (1) when p and D
have similar magnitudes. The nonlinear term N corre-
sponds to the radial current I", —I; in local theory (i.e.,
shear viscosity is neglected), which arises from ion orbit
loss, drift wave convection, and ion parallel viscous damp-
ing [11,12]. The existence of multiple states was predict-
ed by solving the local net-current-free condition, N(Z,
g) =0, to obtain Z(g). The variable g corresponds to dk,
where k =ppn'/n, d =Dp/vpp, p~ is the ion poloidal

Motivated by the theories, experimental checks have
been done. It was observed in D-III-D [13] that poloidal
Aow changes significantly and E„jumps to a more nega-
tive value. Further E„profile measurements on JFT-2M
[14] confirmed the E„change and revealed that dE„/dr
becomes more negative. Active biasing experiments on
CCT [151 and TEXTOR [16] have shown that the L-H
transition can be induced by both positive and negative
biasing. From these researches it is understood that the
L-H transition involves sudden changes of both dE„/dr
and the sheared poloidal Aow. Regardless of the sign of
F.„, a picture of the bifurcation between multiple states is
supported. (Theoretically, the sign of E„depends on the
boundary conditions imposed on the plasina. ) However,
quantitative tests of the models on the threshold condition
and the transport barrier are not complete; the spatial-
temporal structure was not analyzed theoretically and the
thickness of the barrier was introduced as a parameter in

the theories. Also awaiting investigation is whether the
physics picture of Refs. [11,12] can predict the dynamics
of ELMs which are also characteristics of the H mode.

The theories of Refs. [11,12] are extended to include
the temporal evolution and the spatial diffusion. The
newly obtained equations for the edge density and E„(or
Va) are of the time-dependent Ginzburg-Landau type
[17], which contain the solution of a limit-cycle oscilla-
tion. This oscillation is attributed to be one class of small
and frequent ELMs. A model S curve is employed for
the phase diagram of the density gradient and the particle
Aux. The radial structure is obtained and it shows the ex-
istence of an intermediate phase (mesophase) of the
diffusivity between the L and the H phases near the edge
region. %e assume a uniform temperature, since the
ELMs of interest here are experimentally insensitive to
the heating power.

The model equations consist of the radial transport
equations for the density n, with the effective diffusivity
D, and for the normalized radial electric field (or poloidal
rotation) Z, with the viscous diffusivity p. The value of D
can be multivalued and is a function of Z. The equations
are given by

A

I

I

I

0 I ~ ~ ~ ~ ~

8:

FIG. 2. Model of effective diffusivity D (i.e. , ratio of the par-
ticle Aux to the density gradient) as a function of gradient pa-
rameter g. See text for the definition and normalization.
(a =1, P =1, D„„,=3, D.;„=0.01, gp= 1.)

gyroradius, v is the ion collisionality, and Do is a typical
electron diffusivity. Contrary to the local theory in which
N(Z, g) =0 is solved, here Z(x, t) is calculated and the
evolution of D(x, t) is obtained. We use the model S
curve for N, and D is assumed to be a smooth function of
z,

N(Z, g) =g —gp+ [PZ —aZ],
D(Z) = —, (D,. „+D;„)+—,

' (D „„—D;„)tanhZ. .

In writing explicit forms for N and D, we normalize x by
p~, D and p by Dp, t by pp/Dp, and flux I by Dpnp/pp
p/Dp is the diffusion Prandtl number PD. The normaliz-
ing density np is chosen so as to satisfy gp=l.
=(p/p~) (p is the ion gyroradius) and e(&1 [18]. The
parameters gp, a, P, D ,„, D;„, and p. /Dp are treated as
constants. A typical curve of D(g) for N(Z, g) =0 is
shown in Fig. 2. The large-D and the small-D branches
correspond to the L and the H states, respectively.

We numerically solve Eqs. (1) and (2), with the simple
condition that 8Z/Bt =0 (i.e., e=O). Equation (2) is a
kind of time-dependent Ginzburg-Landau equation [17],
the one which is used to analyze the reaction diffusion
system in chemical reactions. The system contains a so-
called slow manifold structure due to the assumption
e(& 1.

The slab region near the plasma edge, —L & x &0, is
our interest. For the boundary conditions at the plasma
edge (x=O), we impose the constraint that (n'/n) "n is
fixed. A simulation analysis on the scrape-off'-layer plas-
ma transport has shown that ~b/a ~

(& 1 holds [19],and we
discuss here the case of a=1 and b =0. At the core side
(x = L), we give the particle I—lux 1;„.

Solving Eqs. (1) and (2) with s =0 we find a state with
periodic oscillations of the edge density n, and of the loss
Aux l,„t in a restricted parameter space near the bound-
ary of the L and 0 states. The Aux I,„t is defined at
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x=0. In Fig. 3, the temporal evolution of I,„„which
corresponds to the H, burst, and the Lissajous figure
for n, and I,„t are shown. The parameters are gp=l,
a=0.2, P=0.2, D .,„=3,D;„=0.01, p =1, I;„=3,and
)i,, (= n/n—'at the edge ) =1.25.

These oscillating solutions are attributed to the ELM
y-0 mode. The parameter space where the ELM y-0
mode appears is found to be

Dnl jgm & I in~s & DM jgH ~ (3)

where g =gp —2P(a/3P), gM =gp+2P(a/3P), D
=D(Z =a a/3P), and DM =D(Z = —Ja/3P), as shown
in Fig. 2. In this parameter regime, a limit-cycle solution
on the D-g plane (at the edge) appears. When I;„is large
enough to satisfy I;„X,& DM/ger, we find the stationary L
state; the H state with steep density gradient is found in

the region I;„A., &D /g . If D /g & D~/g~ holds, no
oscillation is allowed. Details will be reported elsewhere
[20].

In Figs. 3(c) and 3(d), the radial structures of the den-
sity and the effective diffusion coefficient D are shown at
the times of high and low confinement. A transport bar-
rier near the edge, at which D is reduced, is formed in a
phase of rising density. A smooth curve for D is formed
due to the finite viscosity p [21]. The spatial structure of
D shows the existence of a inesophase of the L and H
phases near the edge. (In the mesophase, D has a value
intermediate between those for the H and L branches in

Fig. 2.) The thickness 6 is estimated as A= J2Piu/a in

the small-p limit. A numerical calculation gives h,

eeiu, confirming this analysis. (L satisfies L»A, so
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FIG. 3. (a) Temporal evolution of the outfiux and (b) the

Lissajous figure for the edge density and the outflux. Parame-
ters are a=0.2, P =0.2, p =1, I;„=3,Ar, =1.25, and others are
the same as in Fig. 2. Spatial profiles of (c) density and (d)
diffusivity. The time slice is denoted by arrows in (a). The
solid and dashed lines are for before the burst and at the end of
the burst, respectively.

that 6 is not limited by the computation region. ) In this
region, poloidal rotation exists. The width A is diff'erent
from the width of the density inversion region.

We study the parameter dependence of the period r
of the oscillation. The numerical computation gives z
=beak, ,ha~ ', where C is a numerical coeScient of the
order of unity. As is shown in Eq. (3), A, , is bounded in a
narrow region for realization of the oscillation. If the ra-
tio X, /Dsr and other parameters are fixed, we have
r ceDsr over a wide range. On the other hand, if the
value of I;„k, and other parameters are fixed, we have

~ I- —0.5

The ratio of the time interval of good confinement
(rH) to r, rl = r H/r, represents how close the intermedi-
ate state is to the H mode. (In the H mode, rl =1; g =0
for the L mode. ) In the parameter space predicted by Eq.
(3), rl takes intermediate values between 1 and 0. g is a
decreasing function of I;„X„and is discontinuous at the
boundaries D~/g~ and Dsr/ger. For oscillating solutions,
r) takes its largest value g .„„at I;„)i,, =D~ jg~. r),. „ in-
creases and approaches unity if D becomes close to
D;„. This is confirmed by reducing D to D;„by fixing

g . For instance, by taking a =0.2 and P =a, g can be
greater than 0.95, i.e., the period is 20 times longer than
the pulse width. In other words, the degree of H mode
depends on the transition structure.

In summary, a theoretical model of ELMs is developed
by extending the bifurcation model to the time-dependent
diffusive media. A time-dependent Gin zburg-Landau
model equation with the spatial diffusion is applied. A
periodic solution of the plasma density and outllux is
found, revealing a sequence of bursts of plasma loss. This
model reproduces the oscillations in which the decay time
of the loss and the period are comparable. The region of
this nonlinear oscillation is identified to be near the L-0
modes boundary. The degree of H mode, g, which repre-
sents the L-0 intermediate state, is studied. The parame-
ter dependence of the period is studied. A mesophase of
the diffusivity between the L and H phases is found near
the plasma boundary. The width of the transport barrier
was found to be proportional to (PPD/a) ' . The impor-
tance of the ion viscosity on the pedestal is shown. The
interpretation of the parameters (a,P,D,D~) in terms of
physical quantities depends on bifurcation models. A
simple extension from Ref. [11] gives a =3P=3 [1
—ddln(2e/d)l/2[1+ddln(2e/d)], Dsr =d, and D, =d/
2(ln2e/d). For fixed I;„and A,„the value of d delimits
the regions of the L, ELM y H, and H modes. Thes-e re-
lations provide a test for comparison when experimental
measurements of the shear viscosity near the edge is
made. For the case of e&0, a similar result is reproduced
when s is small (s&0.5 for the case of Fig. 1). Fluctua-
tions in the source or external oscillations cause chaotic
oscillations of n, I,„t, and F,. The interpretation of Eq.
(3) for various models and the following study requires
further effort; some will be given in Ref. [20].
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