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A method is presented for evaluating the amplification of a three-wave parametric instability in a
medium having a slow, locally linear variation in both time and space, and is applied to the specific case
of stimulated Brillouin scattering (SBS) in a plasma undergoing an isothermal rarefaction. Time depen-
dence can substantially alter the gain of such a parametric amplifier. For SBS in a subsonic rarefaction,
inclusion of time dependence eliminates the absolute instability.
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Because optical media can support so many diferent
waves, any intense (pump) wave in a plasma or other op-
tical medium can generally decay into other waves. In
three-wave parametric instabilities, the pump resonantly
decays into two daughter waves, with the three waves

having frequencies and wave vectors coo, m l, co2 and

ko, k~, k2, respectively. If the medium is inhomogeneous
in space and time, then the decay is only resonant at the
spatiotemporal matching surface where coo=co~+~2 and
ko=k~+k2. Nonetheless, amplification can occur as the
waves transit the matching surface and absolute instabili-

ty is possible under some conditions [1]. There are
several important examples of such instabilities, notably
including stimulated Brillouin scattering (SBS) [2]. In
SBS in a plasma an electromagnetic (em) pump wave de-

cays into a scattered em wave and an ion-acoustic wave.
This instability is of particular practical importance for
laser fusion [3], as it acts to reduce the efficiency of the
fusion implosion. Other similar instabilities are impor-
tant to laser-plasma interactions [3], magnetic-fusion
plasmas [4,5], and other plasma systems [6].

Most linear analysis of unstable, three-wave decay has
followed the formal approach developed by Rosenbluth
[1] for time-independent media. Such work has shown

that absolute instability is only possible when the decay
waves have opposed group velocities. However, even then
the instability is nevertheless convective in media having
a uniform pump and a precisely linear spatial gradient of
the mismatch of the wave numbers of the three waves.
Many specific cases have since been worked out [7], but
always on the assumption that the profiles of the plasma
parameters do not vary in time. Nonetheless, experi-
ments often produce time-dependent media —plasmas ex-
pand, filaments form, and ions ionize further.

The appropriate abstract generalization of previous re-
sults to (slowly) time-dependent systems with linear gra-
dients in space and time was recently given in a Comment
by Williams [8]. The present work is the first discussion
and application of this theory. A method suitable for the
evaluation of the gain of any three-wave process is pre-
sented. This method is applied to SBS backscatter in an

isothermal rarefaction, including the case of a subsonic
rarefaction that applies to current laser-plasma experi-
ments using visible and UV lasers. As we shall see, time
dependence can alter the gain and the spectrum of three-
wave instabilities. For clarity in the following, we discuss
only plasmas with one-dimensional spatial variations.

Rosenbluth found [1] that three-wave instabilities are
inherently convective in media having a linear spatial gra-
dient of the wave-number mismatch, x =k~+k2 —ko
=x'x. The amplification is e, where

G =2tryo/I tc'v, v, I .

Here the growth rate of the instability in a homogeneous
medium is yo, and the group velocities of the two decay
waves are v~ and vz. (For clarity, we restrict the present
discussion to systems in which a normally incident pump
irradiates a one-dimensional medium. ) Under some cir-
cumstances, such as that of a parabolic spatial profile of
K, ~' vanishes locally, and the instability becomes abso-
lute. In subsequent work [7,9], it has been seen that al-
most any deviation of the spatial properties of the plasma
system from the conditions assumed to derive Eq. (1) can
restore absolute instability to backscattering when the
amplification exceeds some threshold.

Meanwhile, the problem of mode conversion in (slow-
ly) time- and spatially varying systems was considered by
Friedland, Goldner, and Kaufman [10]. They obtained
an equation, similar to Eq. (1), for the transmission of an
initial mode through a mode-conversion layer in such a
system. Williams [8] connected these two results to show
that, for parametric amplification in a time- and spatially
varying medium, Eq. (1) must be replaced by

G =2tryo/IBI. (2)

The denominator B can be expressed in a form that is
easily connected with the denominator in Eq. (1), as fol-
lows:

B=[8, +(v)+ v2)8, t)„+(v )vp)8„]P.
Here the group velocities of the waves are denoted by v;,
and 4 is the mismatch phase, expressed as the diA'erence
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between the phases of the pump and the two decay waves
(+p, +~,+2): &=+~++2 —+p. As usual, for each of the
waves the local wave number k; is tj„+; and the local fre-
quency co; is —8, +;. Thus, the wave-number mismatch
is given by K=&,&, and B becomes x'v~v2 for time-
independent media.

However, it is clear from the original formulation [g]
that it is not necessary to completely evaluate the phase
of each wave in order to evaluate B. We can identify the
convective derivative of the frequency or wave number of
a wave packet of wave i as rii;=(t), +v;rj„)rp; and k;
= (8, +v;t)„)k;, respectively. These derivatives are readi-
ly obtained from the dispersion functions [11]. Specifi-
cally, rp; = —'d, D;/'d„D; and k; =d, D;/d„D;, in which D;
is the dispersion function of wave i [10,11]. Some alge-
bra then shows that (3) can be written as

8 =8)+82 —Bp, (4)

in which Bi = —~i+ L 2k], 82 &2+ L']k2, where re-
markably the contribution due to wave 1 (B~) depends on
the group velocity of wave 2 and vice versa. In addition,
one can write Bp as

larger than the product of c, and laser-pulse duration.
Let the electron density be given by n =n, e~ and the flow
velocity by u =c,(( —1), with n, being the density at the
sonic point and with the similarity variable relating space
(x) and time (t) by (=x/c, t. The expanding plasma ex-
tends from (=1 to —ee and attaches to the undisturbed
plasma at g= l. We take waves 1 and 2 to be the elec-
tromagnetic, scattered-light wave and the ion-acoustic
wave, and designate them as em and ia, respectively.
Table I shows the values of m, , 6;„., k, , and k;„. implied
by this plasma model, and substituting 0 for em in the
table gives 6p and kp. The electron Debye length is A, D.
Note the relativistic effect that the dispersion function of
the electromagnetic waves properly does not include a
Doppler shift.

We compute the terms Bp, 8, , and 8;„. to lowest order
in c,/c, keeping k;.„A.D finite, with results also shown in
Table I. The contribution from B, cop, which as discussed
above includes the eff'ect of the global variation of the
medium on the pump frequency, is first order in c,/c and

v ]Bp=
vp

v2 v2—cop 1+ + +v2kp
L'p

TABLE I. Ray parameters for SBS in an isothermal rarefac-
tion.

QPQ'Hh:~-11$%t ~~QQ
vi

t)l Cop 1 (5)
vp vp

to allow simplification in the common case where v2

((v~ vp. Given a model of the time and spatial depen-
dence of the plasma parameters, it is straightforward to
evaluate the convective derivatives here. However, unlike
the mode-conversion problem there remains a term pro-
portional to B, rpp which is determined by the global varia-
tion of the medium and the external pump source. This
arises because, in the parametric approximation, the
pump field is externally imposed and is eAectively a prop-
erty of the medium. Variation of the pump frequency at
a fixed position in the plasma can arise from an external
chirp in the vacuum pump frequency and/or from a prop-
agational Doppler shift deriving from a time-varying opti-
cal path [12].

A study of Eqs. (4) and (5) suggests that eA'ects of
time dependence may be significant if the group velocity
of either daughter wave is not large compared to the
characteristic velocity of the plasma defined as the ratio
of its characteristic length and time scales. This is the
case for SBS backseat ter from an expanding, laser-
produced plasma, which we now consider, where the
characteristic velocity is of order of the ion sound speed
c,. SBS has been discussed for various circumstances, in-
cluding that of flowing, supersonic, inhomogeneous but
time-independent expansions [13-15]. For the sake of
definiteness, we will treat a plasma undergoing a planar,
isothermal, self-similar rarefaction [16] This model is
reasonable for experiments in which the laser spot is

Dem (&em~kern+&t) = toem - +pe - C kern

vem = ~Dem/ BmDem = C kern / toem

to ~ = &a D~ / ~m Dem = pl
2 toem t

em m em =
2 Memx

Ien~aom¹c mave

g 2 -1/2)~
Dja (toja&kj~&t) = Mta - k;au - kjace ( 1 + kiaXD

2 -3/2
via = W Dia / &m Dia = u + ce ( l + king, &D

m; = ++a = ja~~ [ ].+-'kt~aQ) (1+k~~AD)
Bm Dttt t

k =@+ = ' l+ —k~ XD(1+k Q)a D,
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is unimportant to lowest order. 8 is then given by
r

COp 1+ 1— (6)

(7)

where n, is the critical density of the pump wave. For comparison, if we had neglected the contribution of the time
derivatives to 8, keeping only the usual rc'v;„. v, we would have obtained

.2 2
x''v;.„v,m = ~ 1+ 1

— — ln + (1+k;„.kD) ' +
COp n n n k,,A, D

t n, n, n, (1+k;,XD) '/

The use of Eq. (7) might be a reasonable approximation
for plasrnas produced by small laser spots of diameter D
that develop a spherically diverging, stationary flow dur-
ing the laser pulse, if one substituted t —D/c, . However,
this would only be an approximation as the model used
here does not accurately describe the profiles for station-
ary spherical flow. Note also that the WKB approxima-
tion breaks down as t approaches zero, but that the ten-
dency for 8 to increase and for the gain to decrease is
physically correct.

Figure 1 shows the gain factor 6 evaluated from Eqs.
(6) and (7) for two cases of interest, with yo from Kruer
[17]. Previous theory of SBS has considered the case of
supersonic flow in an inhomogeneous plasma with n, =n,
[13]. Such a flow profile may plausibly be present in
plasmas produced by infrared lasers, and Fig. 1(a) shows
results for this case. The impact of time dependence is to
increase 6 by a factor of up to 2 near the critical sur-
face. In contrast, plasm as produced by moderate-
intensity, visible or UV light have n,, & n, . Figure 1(b)
shows results for this case. For steady plasmas, SBS be-
comes absolutely unstable in an inhomogeneous plasma
with inhomogeneous, subsonic low. The eAect of time
dependence is to eliminate the absolute instability,
through the dephasing of the light waves in time.

One can apply the method just demonstrated to evalu-

ate the gain for any other three-wave parametric instabil-
ity in any time-dependent medium. For example, similar
results to those obtained for SBS are obtained for the
ion-acoustic decay instability [18]. In addition, time-
dependent eff'ects can in principle cause 8 to vanish when
it otherwise would not. This requires more rapid time
variation, as may be produced for example by the fast
ionization of an inhomogeneous plasma by a short laser
pulse [191. One should note that the significance of
divergence of the gain 6, arising from a zero of 8, is less
clear cut in the time-dependent case than otherwise. It is
then necessary to keep higher-order terms in the Taylor
expansion of the phase mismatch. One anticipates that
the convective gain will turn out to be finite, but there is
the additional possibility of an instability of an absolute
nature, that is, of the existence of a temporally growing
mode [20]. However, the growth is not time asymptotic
as in the stationary case because in general the Taylor ex-
pansion in time will cease to be valid.

In summary, any time dependence of the medium
should be considered when evaluating the amplification of
three-wave parametric instabilities. A method for doing
so has been presented here, and the specific case of SBS
backscatter in an isothermal rarefaction has been worked
out as an example. Further studies of instabilities in
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FIG. 1. Amplification of
case (n, =n, ), with electron
sonic case (n, =0 4n, ), with.

SBS backscatter vs density for an isothermal rarefaction from a CH target after 0.5 ns. (a) Supersonic
temperature T, =2 keV, pump wavelength %0=1.05 pm, and pump intensity II=10' W/cm . (b) Su. b-
T, = 1 keV, A.o =0.351 pm, and 11. =10'4 W/cm'.
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time-dependent media are clearly warranted. Such work
should include analysis of the growth rate of any absolute
instabilities, determination of the angular distribution of
the scattering, evaluation of instability behavior in sys-
tems with nonlinear profiles and in three dimensions, con-
sideration of the eA'ects of pump bandwidth and damping,
and scaling experiments to isolate these eAects.
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