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Analytic Model for Scaling of Breakdown
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A theory is presented for the time-dependent breakdown of a network of spring (fuse) elements where
the probability of breaking an element under load a is o.". For all g, it predicts the system-size scaling of
the number of broken elements at breakdown found in simulations. The breakdown is shown to be per-
colationlike for g 2 but is due to the dominance of one large growing crack, despite the absence of a
failure threshold, for g & 2. This transition in fracture behavior and in scaling at g) 2 is found to be
directly related to the dependence of crack tip stress enhancement on the square root of crack size.

PACS numbers: 46.30.Nz, 62.20.Mk, 77.50.+p, 81.40.Np

The problem of fracture in random systems is receiving
growing attention because of its relevance to the perfor-
mance of advanced composites and its relation to random
system problems in statistical mechanics [ll. The frac-
ture in brittle systems, where the basic elements exhibit
linear response up to a failure point, is particularly com-
plicated because of its sensitivity to extreme events, i.e.,
the rare large crack which propagates unstably across the
sample prior to any appreciable crack growth elsewhere
in the material, which leads to system-size-dependent
failure. Systems with time-dependent disorder are of spe-
cial interest in connection with creep and fatigue and are
also closely related to problems such as diAusion-limited
aggregation (DLA) and dielectric breakdown [2]. To
date, failure and related problems have largely been stud-
ied by simulations. But, since real systems are much
larger than those accessible by simulation, it is crucial to
understand the dominant mechanisms of failure and veri-

fy the nature of any size dependence observed in simula-
tions by using analytic models.

In this Letter, we study a failure problem in which
each element breaks at a rate dependent on its time-
dependent stress. The local stresses vary in time because
of load transfer from previously failed elements to intact
elements, leading to considerable disorder in the stress
fields and failure patterns. At some time, global failure
occurs as the system breaks into two pieces. The system
thus has an intrinsic lifetime and can only sustain a cer-
tain amount of damage prior to complete failure. Despite
the apparent complexity of the global failure process, we
introduce here an analytic model which captures the
essence of the fracture behavior, and predicts the ob
served size scaling of damage at global failure. The
model includes only the stress enhancements at the tips of
any cracks and neglects all the disorder associated with
longer-range stress fields and crack interactions. The
quantitative success of our model (see Fig. 1) leads to the
important and surprising conclusion that much of the dis-
order does not influence the size scaling of this failure
process.

The specific time-dependent disorder problem we ad-
dress here, and studied by simulation techniques [3], is as
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FIG. 1. Number of failed elements Nf at global failure vs

system size NT, for various g: open symbols, simulation data
(Ref. [3]); solid symbols, present theory. Data for rt=1, 2, 3,4
are vertically onset by 2.0, 1.5, 1.0, and 0.5, respectively. Ap-
proximate scaling exponents y for theory results are indicated.

follows. A two-dimensional lattice of NT connected
springs (or fuses) is subjected to an externally applied
stress. The springs are then "broken" one at a time by a
probabilistic algorithm where the next spring to break is
selected by (i) assigning a break probability p;(t) to each
element that is proportional to the stress on that element
raised to a power rt, p; (t ) =s; (t ) "ht, where s; (t ) is the
stress on element i at time t, and d, t = I/g;s;(t)" is the
average time required to break the next element (a unit
stress is assumed applied at t =0), and then (ii) choosing
one spring randomly but weighted by the probabilities
p;(t). The time evolution is simply incremented by At
after each break. This algorithm is identical to those
used in studies of polytner failure [4] and those used to
describe dielectric breakdown and DLA (q =1) with the
important exception that here broken elements may occur
anywhere in the lattice and need not be connected to the
single evolving tree as in dielectric breakdown [2]. In two
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extreme limits the behavior of the system is easily under-
stood [3]: For g 0+ ("screened" percolation) global
failure occurs only after a finite fraction Ny/NT )0 of
elements have failed and hence NI 0:NT, for g ~ the
element under the largest stress is always selected to fail,
and so failure corresponds to the growth of a single crack
across the sample since the highest stress always occurs at
the tip of the largest (in this case, the only) crack and
hence NIa:NT' . The scaling of NI with NT for other
values of g has been studied using simulations by Hansen,
Roux, and Hinrichsen [3] for square fuse networks load-
ed by busbars along the diagonals and, less systematical-
ly, by the present authors for triangular spring networks
[5]. The results of Hansen, Roux, and Hinrichsen are
shown in Fig. 1 for @=1-4. For @=1 and 2 the exponent

of Nf a NT is 1 within statistical errors, while for g =3
and 4 the exponents are clearly smaller than 1 and de-
creasing with increasing g.

To make progress on understanding the above size scal-
ing, we consider only the stress transfer to the z neighbors
at the tips of any existing cracks, where the stress is
highest. The stress at the tip of a size-c crack relative to
the applied stress is denoted a.„and depends on c as
a, —c'~, a well-known result in fracture mechanics [6].
We further neglect shielding of elements by cracks and
crack interactions. Then, the cracks become independent
and each element may be classified as either (i) part of
an existing crack, (ii) at one of the z tip elements of an
existing crack, or (iii) an "isolated" element under only
the applied load. With this simplification, the main focus
is on the consequences of the nonlinear dependence o," of
the relative crack growth rates versus crack size, which
will be shown to capture key aspects of the global failure.
Evolution of the entire system is then easily described by
a master equation for the evolution of the crack size dis-
tribution N(c, t) where N(c, t) is the number of cracks of
size c (a contiguous line of c failed elements) at time r,

dN(c, t)' —=a, —iN(c —I,t) —a,N(c, r ), c ~ 1,

where a,. =za,". The terms on the right-hand side of (la)
are the cruxes into and out of the size-c cracks due to
growth from c —1 to c, and from c to c+1. The unfailed,
nontip elements are "cracks" of size c =0 with oo =1.

Given Eqs. (1), global failure in a volume NT with
linear span L =N&.~ is rigorously defined as the point at
which the number of cracks of size c~ L. reaches unity;
i.e. , when the so-called "risk of rupture" function R(c,
r ) =Q„~,N(c, r )/NT attains R(L, t~) =1/NT at some
failure time ty. The number of failed elements at global
failure is then N~=gcN(c, r~). It also proves useful,
however, to monitor the damage evolution through the
decreasing mean-field elastic modulus E(r),

(with p= —", in a continuum model [7]), and to associate
global failure with the point E(t) =0. The implications
of E(r) 0 will be considered below. From Eqs. (1) and
the failure conditions R(L, ty) =1/NT and/or E(t) 0,
the scaling of NI vs NT with q is as follows.

For g ~ 2, solutions to Eqs. (1) show that global
failure occurs via a proliferation of small defects &&L

such that E(t) 0, and N~~NT. At "failure" no cracks
are even close to the linear length L of the system but the
number of elements failed or at crack tips is an apprecia-
ble fraction of NT. Hence, with the inclusion of specific
crack interactions all these defects would link up to form
a macrocrack upon the failure of only a limited number
of additional elements, much as the infinite percolation
cluster forms rapidly as p p, . E(t) =0 in this nonin-
teracting crack model thus gives the approximate point at
which crack linking, followed by global failure, occurs.
So, while the present theory is not quantitatively accurate
in the final stages of failure for g ~ 2, it preserves the
scaling relationship NI 0-NT. The scaling for g ~ 2 may
be understood by considering the short-time solution to
Eqs. (1),

r
c —I

N(c, t) =NT g a;" r'/c!, a, t/c & 1.
i=o

(3)

For @=2 and cr, =Ac'~ (A is a constant) the condition
a, t/c & I reduces to a time limit t ~ I/zA below which
Eq. (3) is approxiinately valid for all c. Furthermore, the
product of the a; is proportional to (c —1)! so that
N(c, t)=t'/c. It is easy to then show that the time re-
quired to obtain E(t) =0 is less than I/zA and, more-
over, that the number of failed elements IV~ is a fixed
fraction of NT, i.e., @=1, independent of the value of p
entering the mean-field E(t). The scaling for @=2, and
hence g ~ 2, is thus a direct consequence of the cr, -c '

dependence.
For rl ) 2, the short-time solution to Eqs. (1) [Eq. (3)]

is only valid, at fixed time, up to some maximum crack
size. For larger crack sizes the distribution N(c, t ) begins
to scale algebraically [8] with c, and for very large cracks
approaches N(c, t) —a, ' —c "~ . Hence, well prior to
attaining E(t) =0 by a proliferation of small defects, the
quantity R(c,r), which can be expressed as R(c, t)
=f&dr'a, ~N, ~/NT, becomes a very slowly varying
function of c for sizes c such that a, t/c»1. Thus, the
"largest crack" c at time r, as determined by R(c*,t)
=1/NT, rapidly increases from small sizes (&L to the
size L in a very short time near t~. Figure 2(a) shows
R(c,r) for g =4, NT =10 (2 =1+1/z, z =4) at various
times during the damage evolution, with a graphical
determination of c . The rapid change in c corresponds
to the rapid propagation of a single crack across the sam-
ple with limited crack growth elsewhere, a runaway
phenomenon which cannot occur for q ~ 2. The runaway
breakdown essentially cuts oA the damage evolution
occurring at smaller crack sizes and leads to the sublinear
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FIG. 2. (a) log~o of the risk of rupture R(c,t) vs c for vari-

ous t near failure as predicted from Eq. (1) for tt =4, NT =10 .
The largest crack c* at each time occurs at R(c*,t) = I/lVT, as
shown, and grows rapidly as t tf due to the slow c depen-
dence of R(c,t). Also shown are the numbers of failed ele-
ments Nt, at each time. (b) Evolution of the crack distribution
lV(c, t) vs c for various t near failure as predicted from Eqs. (1)
and (4), for t1=4, NT=10, and p;„=0.5. Note the emer-
gence and rapid propagation of a single crack as t tf. The
number of failed elements 1Vb at each time compares well with
those in (a) for the same "largest crack" size c* [i.e., the same
c satisfying P„,~ N(c, t ) = I ].

scaling Nf ~NT" (y& I). The sublinear scaling is also
seen clearly from Fig. 2(a): Increasing NT lowers the
I/NT line and reduces the time, or fraction of elements
broken, required to obtain the failure condition R(L, tf)
=I/NT. The value of the "scaling exponent" y as a
function of rt involves the details of precisely how N(c, t)
approaches its asymptotic scaling of N(c, t) —a, ' for
c=L, and analytic expressions for N(c, t), and ultimately

y, can be obtained under the approximation N(0, t) =NT.
Before presenting detailed numerical results showing

the quantitative accuracy of this theory, we summarize
the above general analysis. Solutions to the crack evolu-
tion Eqs. (Ia) and (lb) show that (i) for tI ~ 2 failure

+occurs almost as in the screened percolation v@=0
problem, with the Nf ~NT scaling due to a crack growth
rate a, =ztT," not increasing with c, while (ii) for tI & 2

the rate a„ increases with c, leading to an algebraic tail in

N(c, t) after some time, subsequent runaway breakdown,
and a sublinear scaling Nf ~NT, y& 1.

Note that Eqs. (I) are valid for any system size NT
and all crack sizes c, including cracks such that N(c, t)
& 1, i.e., cracks which do not exist on average in a sam-

ple of size NT. To make quantitative contact with simu-
lation results (and also to reduce the computational effort
considerably), we consider Eqs. (I) valid only up to crack
size c~,. „—I, where N(cm, „—I, t.) &.pm;„and N(cm,. „,t)
&p;„and p;„=1. The largest crack of size c „. „ then

evolves as

dN(c „„t)
max maxat

(4)

That is, we do not allow the size-c,. „crack, which occurs
with probability less than p;„at time t in the size-NT
sample, to grow in time to size cm„. „+1. cm„. „does in-

crease with time by I unit as N(c „„,t) cross. es the value

p;„by the evolution Eq. (4). By this procedure, the
small but finite probability of occurrence of cracks of size
& c .„„ is continually redistributed among the cracks of
size ~ c „. „. The precise choice of the cutoA proability
p;„=1 has no eAect on the results for g» 2 and no
eAect on the scaling for g& 2. For g& 2 pmjg is physi-
cally chosen so that the large crack that emerges and

propagates to cause failure occurs with unit probability.
For specific comparisons to the data of Hansen, Roux,

and Hinrichsen we utilize the approximate form o, =(I
+ I/z)c ', which captures the crucial c dependence of o;
and z =4. Our results for Nf vs NT are shown in Fig. 1

for g = 1-4 with p;„=0.5. As expected from our
analysis, for g ~ 2 we find Nf ~ ÃT for all NT and for
tI & 2 we find the sublinear scaling Nf tx N (y & I ), with
y=0.95 for @=3 and y=0.81 for @=4over the range of
simulation sizes, but with an increasing trend in y with

increasing NT. Results for tI =5 (pm;„=0.5) and 8

(p;„=1.0) are also shown; here the increasing trend in y
values is clearly evident, but y =0.71 for q =5 and
y=0.57 for @=8 provide reasonable fits for NT ~ 10 .
The emergence and propagation of the single crack in the
crack distribution N(c, t) is shown in Fig. 2(b) for the
same values of rt, NT, and c* as in Fig. 2(a). Use of Eq.
(4) does not appreciably alter the emergence and propa-
gation of the large crack, nor the number of failed ele-
ments Nb during the evolution of damage [compare the
Ng ttl Figs. 2(a) and 2(b) j. Overall, we ftnd excellent
agreement with the scaling relations and with the actual
magnitudes of Nf obtained via simulation, with no ad
justable parameters.

In a future paper, we will discuss the richness of our
simple model in more detail, and include (i) the scaling of
the failure time tf with system size, (ii) the dependence
of y on the form of cr, for tI & 2, (iii) the insensitivity of
the size scaling to crack linking interactions, which can
be included exactly in some cases, and to mean-field
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crack interactions, and (iv) the relation of our model to
that of Phoenix and Tierney [9], which exhibits some
similar features.

The quantitative agreement of our theory with simula-
tion results leads to the surprising conclusion that crack
interactions do not play a key role in the failure for rt ) 2,
and for @~2 are probably relevant only in the final
stages of global failure. Instead, the dominant feature is
the stress enhancement at the tip of an isolated crack,
and the scaling transition for g & 2 stems directly from
the dependence of that stress on the square root of crack
size. The evolution of damage in quenched-disorder mod-
els [1],where the elements are assigned breaking thresh-
olds a priori, may thus also be approachable with a simi-
lar neglect of specific crack interactions. For g & 2, we
also find that failure occurs by the dominant propagation
of a single crack, despite the absence of any threshold in-

stability condition in the problem. In closing, we
reiterate that since these size eff'ects are not small correc-
tions to the "thermodynamic limit" NT ~ but instead
dominate the failure of the system, it is imperative to un-
derstand the origin of failure processes and their size
scaling through tractable analytic models such as the

present model.
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