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We investigate the mechanism of pair creation in scalar QED from spatially homogeneous strong elec-
tric fields in l+ 1 dimensions. Solution of the semiclassical field equations shows particle creation fol-

lowed by plasma oscillations. We compare our results with a model based on a relativistic Boltzmann-
Vlasov equation with a pair-creation source term related to the Schwinger mechanism. The time evolu-

tion of the electric field and the current obtained from the Boltzmann-Vlasov model is surprisingly simi-

lar to that found in the semiclassical calculation.
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The problem of spontaneous pair production in the
presence of an external electric field has been investigated
by many authors [1-6]. The most commonly used for-
mula for the (boson) pair-creation rate is based on
Schwinger's one-loop calculation [2] for a constant and
homogeneous electric field E,
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(in units such that irt =c =1). In this expression the mu-
tual interactions of the particles produced and the eAect
of these particles on the original electric field (backre-
action) are not taken into account.

This formula has been used in modeling particle pro-
duction in the central rapidity region in high-energy nu-
cleus-nucleus collisions [7-9]. The production process is
viewed as the tunneling of quark-antiquark and gluon
pairs in the presence of a background color-electric field,
formed after the collision in the region between the two
nuclei that have been color charged by the exchange of
soft gluons. One usually studies only an Abelian version
of the theory; Eq. (I) is used as if the electric field were
constant, and the time dependence of E is put in by hand.

A scheme for solving the quantum backreaction prob-
lem in scalar QED has been offered by Cooper and Mot-
tola [10]. We present here the results of numerical
analysis based on this formalism. One would expect sub-
stantial pair production if the initial electric field is strong
enough (of order Eo), and at large times one should see
plasma oscillations. Studying this requires a numerical
calculation that proves quite challenging. It is useful to
investigate this problem in 1+1 dimensions as a first step
in testing numerical procedures since the requirements of
renormalization are relatively trivial in that case [11].

We treat the electric field as a semiclassical or mean
field, which is justified if the electric field is strong
enough, or if we take the matter field to be a scalar field
in the large-W limit [10]. With a view towards imple-
menting an adiabatic renormalization scheme, we restrict

ourselves to a spatially uniform field. The full scheme is
needed when one solves the (3+1)-dimensional problem,
but infinities must be subtracted even in the (1+1)-
dimensional case.

We also assume a special, albeit natural, initial con-
figuration of the charged-matter field —the adiabatic vac-
uum. This corresponds to the initial configuration as-
sumed by Schwinger [2] which results in Eq. (1) for a
constant electric field.

The scalar-QED coupled equations of motion in the
mean-field approximation (and without the p self-inter-
action term of Ref. [10]) consist of the Klein-Gordon
equation,

[(r)"+ieA") (r)„+ieA„)+m 2]@(x)=0,
and the semiclassical Maxwell equations,

(2)

(3)

where 4—:A] and j=j~. Homogeneity also enables us to
expand the boson field operator + in terms of plane
waves, defining the operators alt, and bI, via

e(x, t ) =„[fp(t )ak +ft,*(t)b t
k ]e'"dk

where to satisfy (2) we demand

d'fk (t)
dt

+rot2(t)fk(t) =0,

roy (t) '—= [k eA (t)] '+ m '. —

The canonical commutation relations imply that the ft, (t)
can be expressed in terms of the real and positive func-

where lo& is the adiabatic vacuum and j" is the current of
the charged scalar field. Spatial homogeneity causes the
charge density j to vanish everywhere. The Maxwell
equations in the gauge 20=0 consist of the single equa-
tion

A =&oljlo&,
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number operator for large times,

1 dN
V dk

QI,
&0(ak ak"'(0& = lim (nk cok) '+ —'

2m f- 8z AP coI, 4 QI,
(10)

shown in Fig. 3. These oscillations are the result of oscillations in time with the momentum-dependent frequency Qk (t),
as seen in (7). They disappoint the hope of a simple power-law falloff at large k, and hint at some likely difficulties in
the implementation of the adiabatic renormalization scheme in 3+1 dimensions.

Many calculations in the realm of nucleus-nucleus collisions have been based on a phenomenological model employing
a relativistic Boltzmann-Vlasov equation with a source term to describe particle creation [12-14]. In order to gauge the
validity of this model, let us compare its results with those of our semiclassical analysis. The relativistic kinetic equation
in the presence of a homogeneous electric field is

Bf+ df dN
Bt Bp dt dx dp

ln 1+expeE(t)
2Ã

xm

where f(p, t) is the (x-independent) classical phase-space distribution and the right-hand side is the boson pair-
production rate in 1+1 dimensions. [We assume that the particles are produced at rest, i.e., the source term is propor-
tional to 6(p).l The solution of Eq. (11) is given by

f(p, t) = dt' ln 1+exp, eE(t')(
2~ (eE(t')

I

S(p —eA(t')+ed(t))

1 zmg ln 1+exp (12)

where the t s fulfill p+eA (t) —eA(t;) =0. The field equation for A is

d A

dj J total Jcond +J pol ~

where the conduction current is

(13)

J«~d =2e pf(p t)
aJ

with e„=(p +m ) ', and the polarization current is [13]

(14)

2 dN=E P" dtd dp

[The factors of 2 in (14) and (15) account for the contributions of the antiparticles. ] Inserting Eq. (12) into Eq. (13)
reduces the system to a single equation

d A
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in terms of the dimensionless variables 2 =eh/m, E, and

The time evolution of E and j is shown by the dashed
curves in Fig. 1, where we see that for an initial field
Ef=o=1 there is good quantitative agreement between
the results obtained with the two very different methods.
The oscillations are faster and the electric fields decay
more rapidly in the semiclassical calculation than in the
Boltzmann-Vlasov model. This is because in addition to
spontaneous pair creation, the quantum theory takes into
account pair creation via bremsstrahlung ("induced" pair
creation) and Bose-Einstein effects, all of which are

neglected in the kinetic theory. Figure 2 reflects this
feature by comparing the plateau currents (the peak
values in the first oscillation) as functions of the initial
electric field. Decay of the oscillations would presumably
be accelerated by the inclusion of collisions, which can be
done by including a p term in the semiclassical equation
(2) and the corresponding collision integral in the Boltz-
mann-Vlasov equation (11).

The distribution function f(p, t), measured after sev-
eral plasma oscillations, may be compared to the quan-
tum theory's V 'dN/dk after the latter is smoothed, as
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(a) Momentum distribution of produced pairs, for the evolution shown in Fig. 1(a), at time r =55().
scaled kinetic momentum p=k —A, with k=k/m. (b) Data of (a) after smoothing (solid curve), compared with the Boltzmann-
Vlasov model (dashed curve).

shown in Fig. 3. Naturally, the curves have diAerent normalizations and a relative displacement due to the slightly
different values of j and A. Because of the similarity between the results in Fig. 3(b), one can use the kinetic-theory
model to explain various features of the particle distribution, such as the sharp edges and tails.

The kinetic theory can be improved by use of a source term that takes stimulated pair creation into account. Thus, we

replace the right-hand side of (11) with

=[2f( r)+ I] ln 1+ex
d& d» dp

' 2~ "
I «(&)I,

6(p) . (17)

With this source term the agreement between the kinetic
theory and the quantum theory is even more striking, as
demonstrated by the dash-dotted line in Fig. 1(b).

A more extended comparison of the semiclassical and
Boltzmann-Vlasov models will be presented elsewhere.
We conclude that the phenomenological model with the
stimulated-emission source term yields a surprisingly
good approximation to the semiclassical QED results.
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