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Quantum Eigenvalues from Classical Periodic Orbits
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We combine the cycle-expansion method with a functional equation to obtain highly excited semiclas-
sical energy eigenvalues for chaotic Hamiltonian systems. Applications to the anisotropic Kepler prob-
lem and to a bounded billiard demonstrate the power of the method. The agreement with quantum re-
sults is surprisingly good even for highly excited states.
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There is growing theoretical and numerical evidence
that the eigenvalues of a quantum Hamiltonian are inti-
mately connected to the periodic orbits of the correspond-
ing classical system. For geodesic Aow on a surface of
constant negative curvature one has an exact correspon-
dence: The quantum eigenvalues are zeros of an infinite
product over entries from classical cycles (Selberg trace
formula) [1,2]. For general Hamiltonian systems, such a
correspondence is suggested by a semiclassical expansion
of the path-integral expression for the density of states
around classical periodic orbits (Gutzwiller trace formu-
la) [3,4]. As a consequence, one should be able to obtain
classical periodic orbits from long-range correlations in
the sequence of quantum eigenvalues, and this has in fact
been demonstrated [5,6]. What has been missing is a
demonstration of the validity and accuracy of the Gutz-
willer theory for short-range correlations, i.e., individual
eigenstates.

Attempts to obtain quantum eigenvalues for chaotic
systems from classical periodic orbits face (at least) two
serious problems: The Gutzwiller trace formula does not
converge for real energies and the eigenvalues computed
from it are not real. The first problem is caused by the
exponential proliferation of periodic orbits for classically
chaotic systems [7] and requires either smoothing of the
density of states or analytic continuation of the theory.
With the smoothing technique the lowest few eigenstates
could be identified for chaotic billiards [8] and for hydro-
gen in a magnetic field [9]. Many scattering resonances
were computed using the cycle expansion [10,11]. This
method provides, at least for ideal hyperbolic systems, a
rapidly converging continuation of the trace formula
beyond its abscissa of absolute convergence [12].

The second problem may be overcome by appealing to
the theory of the Riemann and Selberg zeta functions
[13-15]. Both satisfy a functional relation from which
one can derive that, forrnal appearance notwithstanding,
a product of the zeta functions with an unimodular func-
tion is real along the axis containing the eigenvalues.
Gutzwiller's theory suggests that the phase of the uni-
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where the last equality defines the Selberg zeta function
as a product over periodic orbits. The mean spectral
staircase function N(E) is given by the classical phase-
space volume plus correction terms of lower order, which
depend on the size and topology of the boundary of the
classically allowed region. The weight tp~ of each primi-
tive (i.e., nonrepeated) periodic orbit (ppo) contains the
action 5 and the stability exponent u of the orbit as well
as phase factors depending on the topology of its stable
and unstable manifolds (Morse index a, type of hyperbol-
icity) [18],
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The plus sign applies to hyperbolic orbits and the minus
sign to hyperbolic periodic orbits with reAection.

modular function is given by the smooth integrated densi-

ty of states. Using this functional equation, one obtains a
real function, the zeros of which should be the eigenval-
ues.

In this Letter we will combine the cycle-expansion
method of Ref. [10] with a functional equation. Applica-
tions of this theory to two strongly chaotic models, the
anisotropic Kepler problem and a bounded billiard, dem-
onstrate that with moderate classical eff'ort one can ob-
tain accurate, high-lying semiclassical eigenvalues [16].

The starting point is the semiclassical expression for
the response function g(E) which splits into a smooth
part go(E) and modulations due to periodic orbits (po) of
action S~ and weights A~ (see Refs. [3,4]),

g(E) =g =go(E)+QA~exp[iS~(E)/h] . (1)1

n & —&n po

Integration and exponentiation of Eq. (1) yields the spec-
tral Euler product as an infinite product of Selberg type
(ignoring renormalizations of the left-hand side) [17],
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Except for the fundamental orbits 0 and 1, each orbit
contribution is accompanied by a compensating term
pieced together from shorter orbits. Thus, terminating
the expansion at a given symbol length effectively means
a resummation of al/ orbits with the approximation that
the longer orbits are exactly shadowed by the shorter
ones. The scattering system discussed in Ref. [10] is hy-
perbolic, all Lyapunov exponents (stability exponent per
period of an orbit) are strictly bounded away from zero,
the compensation is exponential, and the eigenvalues E„
[i.e., the zeros of the infinite product (4)] converge rapid-
ly. For bounded systems, this ideal behavior is typically
spoiled by marginally stable orbits, pruning of the sym-
bolic tree, and accumulating orbits. However, good be-
havior can be recovered, if a functional equation is built
ln.

In general, the cycle-expanded product Z(E) in Eq.
(2) is complex valued, even for real energies. However,
the functional determinant (2) should be real, indicating
that the integrated mean density of states cancels the
phase accumulated by Z(E), so that the right-hand side
of (2) is again real. From this there follows a relation-
ship for complex energies between Z(E) and its complex
conjugate,

z(z) =e'" z'(z).
Such relations are known to hold true for Selberg zeta
functions and for the Riemann zeta function and the
present generalization to more general systems suggests
itself. It has also been related to a bootstrapping of long
orbits [14] and to unitarity of the quantum evolution
[15]. Taking this relation for granted, one concludes that
the zeros of the real expression

D(E) e lxNZ(~) +etnNZ 4 (E) (6)

should be semiclassical approximations to the eigenval-
ues. As this function is almost the functional deter-
minant [19], we will henceforth refer to it under this
name.

As a first example of the utility of the above method,
consider the anisotropic Kepler problem (AKP), de-
scribed by the Hamiltonian
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Its classical properties have been studied thoroughly by
Gutzwiller [4] and an efficient method to obtain quantum

Suppose the periodic orbits could be labeled with a
binary code (as in our examples below). The idea of the
cycle expansion [10,12] is to expand the infinite product
(2) and to group the resulting terms in ascending order of
the symbol length. For k =0 this reads
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eigenenergies is available [20]. The azimuthal quantum
number m and parity n are the only conserved quantities,
thus reducing the Schrodinger equation to two degrees of
freedom. There is strong evidence that for a mass anisot-
ropy of y=0.2 the classical dynamics is completely hy-
perbolic [4]. After desymmetrization, the periodic orbits
of the systems can be labeled with a binary code with
only one restriction: The orbit 0 is not realized in the sys-
tem [21]. We computed actions and stability exponents
of all primitive periodic orbits up to symbol length 8 (71
orbits). The discrete properties of the periodic orbits
(Morse index, type of hyperbolicity) are available
through the coding [21].

The absence of the period-one orbit 0 is a typical ex-
ample of pruning. As a consequence, an infinite number
of terms in the expanded product remain uncompensated.
However, the long orbits shadow a fictitious orbit 0 and
their dynamics suggest to attribute an action 5=0, insta-
bility u =0, and index a =2 to this orbit. Formally, add-
ing this fictitious orbit to the infinite product corresponds
to a multiplication by 2, but such tricks can be used to
speed up convergence [22]. With the action of the orbit
being zero, one also finds a strong tendency for orbits to
accumulate; i.e., there are families of infinitely many or-
bits whose actions converge to finite values.

Calculations using just the expansion (4) without func-
tional equation (see also Ref. [23]) yield results compara-
ble to the transfer matrix calculations of Gutzwiller [4].
The zeros do not converge to the real axis when including
more and more orbits and an exceedingly large number of
orbits is needed to reproduce the correct mean density of
states. This behavior is perhaps special to the AKP and
connected to the peculiar properties of orbits accumulat-
ing to the 0 orbit.

Nevertheless, the situation improves dramatically if the
functional equation (5) is used, as shown in Fig. 1 for the
m =0+ subspace. The effective quantum number z
=4—I/2E defines the natural energy scale in Coulom-
bic systems. We included all orbits up to symbol lengths
4 [Fig. 1(a)] and 8 [Fig. 1(b)], respectively, and con-
sistently expanded the product over k in (2). Increasing
the number of orbits improves the resolution of the
higher-lying states without destroying the resolution of
the lower-lying ones.

Similar results have been obtained for the billiard
bounded by three touching disks (the bounded limit of
the system studied previously [10,24]). After desym-
metrization a binary coding is possible; the orbit 0 is ab-
sent as well as some orbits of length ~ 6 (details will be
given elsewhere). The scaling behavior of families of or-
bits asymptotic to the 0 orbit is different from the AKP
(no accumulation of infinitely many orbits of finite
length). Convergence of the cycle expansion is found to
deteriorate when going from the open system to the
closed billiard. Nevertheless, the zeros of the full product
over the classical orbits move towards the real axis (when
including longer and longer orbits) and end up close to
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