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Scaling Properties of Localization in Random Band Matrices: A o-Model Approach
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We reduce a random-band-matrix (RBM) problem to a one-dimensional, nonlinear, supersymmetric,
n model. This reduction becomes exact in the limit b ~, b being the effective bandwidth. We prove
that b /N, N being the matrix size, is the relevant scaling parameter. When the mean value of diagonal
elements increases linearly along the diagonal an extra scaling parameter arises. These conclusions are
in agreement with recent numerical results.

PACS numbers: 05.45.+b, 72. 15.Rn

Among other ensembles of random matrices that of
band matrices is under intensive investigation at present.
Random band matrices (RBM) were claimed to be
relevant for the explanation of properties of quantum sys-
tems whose classical counterparts display chaotic behav-
ior [1]. The kicked rotator should be mentioned as a gen-
eric example [2]. Besides, RBM arise in the course of in-
vestigation of the conductance fluctuations of thin disor-
dered slabs by a transfer-matrix method [3].

Physical applications of RBM dictate the concentration
of interest on localization properties of their eigenvectors.
When the bandwidth b is su%ciently small all eigenvec-
tors are localized and eigenvalues turn out to be non-
correlated. This is the intrinsic property of spectra of
quantum systems integrable in the classical limit [4]. In
the opposite case b rx'-N, it is quite clear that the RBM
ensemble does not differ practically from the Gaussian
one characterized by delocalized eigenvectors and corre-
lated eigenvalues (modeling spectral properties of "chaot-
ic" quantum systems [4]). Therefore, the RBM ensemble
in a whole range of bandwidths 1 ~ b ~ N seems to be
suitable for interpolating between "integrable" and
chaotic regimes of time-reversal invariant quantum sys-
tems [5].

The present understanding of statistical properties of
RBM spectra is based mainly on results of numerical
simulations. As it was convincingly demonstrated in Ref.
[6], there is the scaling parameter x =b /N governing the
behavior of the system with zero mean value of random
matrix elements. Qualitative arguments about the origin

of such a parameter were presented in [6,7]. In the re-
cent paper [7], another class of RBM (that with the
mean value of diagonal elements linearly increasing along
the diagonal) was considered. It turned out that an extra
scaling parameter enters the problem.

In contrast to numerous computer investigations of
RBM, analytical results are rather scarce. Besides the
exactly soluble case of tridiagonal matrices [8], the only
proven property is the validity of the Wigner semicircle
law for the density of states (DOS) when the bandwidth
b increases with the matrix size N as b tx: N~, P ) 0 [9].

In the present paper we perform the analytical investi-
gation of the RBM properties within the framework of
the supersymmetric approach. This method proved to be
quite powerful as applied to Gaussian ensembles [10,11]
and that of sparse random matrices [12]. By using the
procedure analogous to that introduced by Schafer and
Wegner [13], we reduce the RBM problem in the limit
N»1, b»1 to the one-dimensional supersymmetric a.
model. This very model was considered by Efetov and
Larkin (see review [10]), as applied to the investigation
of electron localization in wires. Exploiting their results
we prove the scaling behavior found in [6,7].

Our method proves to be useful for understanding lo-
calization in more complicated RBM as well. Using an
"electron transport" formulation of the problem, suggest-
ed by our approach, we succeeded both in explaining the
nature of a scaling parameter that arises in RBM with
linearly increasing diagonal elements [7] and in predict-
ing the correct asymptotic form of a scaling function
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[7,14].
Let us consider an ensemble of random bandlike N xN

(N))1) matrices H. The matrix elements H;J =Hi; are
assumed to be real independent random numbers distri-
buted according to the Gaussian law with zero mean
value and variances

ble, let us consider the following correlation function:

i. , =&I
I «+f~ H—)

The exponential decrease of the connected part of this
correlation function at large distances r =im —li deter-
mines the localization length.

Introducing for every "site" j (corresponding to a ma-
trix row) a supervector pi =(SJ',Sg,gi. , —gi. ) with two

and two Grassmanian
dvanced and retarded

'e —H]

H~j' = —,
'

A;, [I+6;,],
commut&ng components SJ,SJ

where A;i—:a()i —ji) depends only on the distance r
ZJ ~XJ~ P=ii —ji. The function a(r) is assumed to decrease suf- Creen s functions

ficiently fast at r ) b, b being the eA'ective bandwidth.
G (, , i,E+.,

To investigate localization properties of such an ensem-
in terms of "superintegrals" [10]:

G, (E,~,J) =(—I)'— + [d&t ](&t,'K&t, )exp —( —1)'—g&t D;, &t,k=] I,J
(3)

where

[dpi] =de'dSJ dgj*dgi, D;1 =[E—ie( —I)']8;1. H;i, K—=diag(1, 1, —1, —1) .

Then the correlation function Al is given before the averaging by the following expression:

I e'Z(J)
lan

|IJ( rlJg

Z(J) =„+[d&t ]exp —gp D,'L, p ', i =I, . . . , 1V, s =1,2,
I,S IJ,S

Di =[[EI+iEL,I+J K]6;i —H;Jj, L., =(—1)'

Averaging Eq. (5) over the disorder we have

(s)

Z„,=—a„+dH;, p[ ——,
'

H, ', (A,, ) ']Z(J)
I,J

=„+[d&t,]exp ——g(p; Lp, ) A;, + gy; [EL+is+J—;KL]y;
J I,J I

A A A

where we united two supervectors p;' i, p; t into a single eight-component supervector p; =(p;' t, p; t) with L,K,J
becoming 8 & 8 supermatrices [10-12].

To proceed further we decouple variables p; connected with diA'erent sites i by means of the Hubbard-Stratonovich
transformation. We obtain

Z„.„=& + [dp. ]exp —gp; (EL+i@+J;KL)&t;
J I

+do; exp ——Str g o; (A ');i Bi ——g P; L '
cr; L '

I I,J I

where o.; are 8x 8 supermatrices and the symbol Str stands for the supertrace. Changing the order of integration in Eq.
(7) and performing the integration over p; we come to

Z„.„=„+der; exp [—S fo,J]],
I

S[8,J]= —,
' Strgci;(A ');arri + —, Stroll. n(E —cr;+ieL+ J;K) .

l,J I

Jh A A

Making a shift, 8; ci;+ieL+ J;K, and diA'erentiating with respect to the source matrix J, we get from Eq. (4) the fol-
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lowing expression for the averaged correlator %'I at e«1:
=

4 z Qd8; g(A ')I Strati~" g(A ') I, StrK81, eI,J , k

So[81=
2 Str g8;(A ');~8J.+gin(E —8;)+ g8;L

l,j 0 i

(9)

where 80 =+;A;~. and we used the block notation

~11 12

-21 -22

I

stemming out of the following decomposition of the supervector, pt=(P ' t, p t), each 8" being a 4X4 supermatrix
conjugated to P

'
P

' t.
To make further consideration as clear as possible, let us specify A;~

=a(~i.——j~) to be of the following form:

a(r) =a( r) =(—2/b)exp( —(r(/b) . (10)

The main advantage of such a choice is that the matrix A entering Eq. (8) is tridiagonal (when solving a one-
dimensional Ising model this fact was used in [15]):

(A '); =— i„[(I+e )8; —e 'i (h;, +8; — )].
2

As it is shown below, our main conclusions are insensitive to the specific form of the matrix A.
Substituting Eq. (10) into Eq. (8) and considering b»1 we get

S[8]~J-O=QStr[ —„' b'(8; —8(+))'+ —„' ci + —,
' ln(E —8;)+ —,'ie8;i ]. (12)

To calculate correlation functions we use the saddle-
point approximation justified by two large parameters
N»1, b»1.

At this point we should note that a closely analogous
procedure can be used for the calculation of the averaged
one-site Green's function

(i~ (E+ie —H) ~i&,

the imaginary part of which gives the density of states.
In this case we can restrict ourselves by introducing only
one four-component supervector per site. The resulting
expression for the action S[8] would coincide with Eq.
(12) with the only replacement of the matrix L by the
identity matrix I. Then the saddle-point equation has the
single solution

8= —,
' [E—i(8 —E ) ' ]I,

independent of the site index i, and for the density of
states we get

p =(I/2g)(2 ——' E ) 'i E 2 (8 (14)

and p 0 otherwise, which is nothing but the famous
Wigner semicircle law obtained for the case of large band
matrices in [9].

In contrast, when calculating the density-density corre-
lator, we have to choose the solution of the saddle-point
equation in the form

8;=T 'HOT, 80= 2 [IE—iL(8 —E )'i ], (15)

dictated by the convergence requirement (see Refs.

%'(x) = Dg(x)str[Kg ' (0)]

where
(16)

S[g]= —,
'

J dx[b d (np) Str(8 Q)

+ exp Str[g(x)L]1 (17)

and the integration in Eq. (16) goes over matrices
Q(x) =T '(x)LT(x), forming the graded coset space
UOSP(2, 2/2, 2)/UOSP(2/2) x UOSP(2/2) [11]. Here we
wrote explicitly an irrelevant parameter d measuring the
distance between neighboring sites and introduced the
density per unit length p =p/d.

The action (17) defines the one-dimensional supersym-
metric a model investigated in a context of electron local-
ization in wires [10]. The parameters entering expression
(17) are related to the bare diffusion constant Do and the

[10,11,16) for a detailed discussion). Here matrices T
satisfy the condition T+LT=L, determining the graded
Lie group UOSP(2, 2/2, 2). Thus, in the limit N
b ~ only the manifold (15) contributes to the integral
(9).

Turning to the continuous limit and neglecting at
r =~!—m~ &&1 a difference between 8I and 8I~ ~, we get
the following expression for the correlation function at
the distance x:

2
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l1~—=(/d =(4ttpb) =(S—E )b (i9)

Applying to the present case a one-parameter scaling hy-
pothesis put forward for disordered conductors in [17],
we conclude that all correlation properties of RBM spec-
tra should be determined by the single scaling parameter
x equal to the ratio of the localization length to the ma-
trix size: x =i~+N ee b /N. This explains the scaling be-
havior observed in numerical simulations [6].

This conclusion is highly insensitive to the specific form
of the function a((i —j~), given its exponential decrease
at the distances r—= ~i

—j~ & b [we assume the normaliza-
tion condition Bp=g, = — a(r) —I at b ~]. In gen-
eral, we should transform the first term in the action, Eq.
(8), going to the momentum representation and restrict-
ing ourselves to the lowest-order terms in a small-mo-
mentum expansion. The resulting expression for the ac-
tion has the same form

frequency m as follows:

Dp —4trpb d, co =2ie.

In Ref. [10] the complete localization of states for this
model was proved and the following expression for the lo-
calization length was found: g~ =4ttpDp. Substituting
relations (18) into this formula we obtain the final ex-
pression for the dimensionless localization length (mea-
sured in units of intersite distance d):

former parameter x.
If we define an "effective localization length" I.' as

that containing the most of an eigenvector normalization
(e.g. , the "entropic localization length, " Refs. [6,7]), it
should be of the order of (~~ at y && I and of the order of
g, ~

in the opposite limiting case. Therefore, L' has the
following scaling form: L' =b f(y); f(y) —1 if y«1
and f(y) —6/y if y » l.

We should note that in Ref. [7] a different normaliza-
tion of matrix elements was used: a(r) —I instead of our
choice a(r) —b '. As a result, the parameter t5, txBpt
tx:b't and the ratio pl~/g, l becomes proportional to the
combination Pb t coinciding with the scaling parameter
introduced in Ref. [7]. Meanwhile, the fit f(y) —y
at y » I used in [7] obviously contradicts the correct ex-
pression f(y) —y

' [14].
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S[Q] = dx[DpStr(ti„g) —2itoStr[Q(x)L]j, (20)

where now

p—=pd =(I/trBo)(28o —E ) 't

Dp =xp82,

82= 2 g a(r)r a:b (2i)

That leads to the following general expression for the lo-
calization length:

l~~ =4trpDp/d = (4/Bp )(28p E)82 a:b—(22)

So far we considered RBM with zero mean value of
matrix elements. Another class of RBM (that with

linearly increasing mean value of diagonal elements: HJ
=Pib;J) was considered in recent work [7]. In our ap-
proach that results in the substitution E Pi for E—in Eqs.
(5)-(8). Such a substitution is equivalent to adding the
uniform electric field F =P/d at the corresponding
electron-transport problem. It is obvious that this pro-
cedure introduces a new length scale (,~=t5./F, where
4=2(28p)'i is the width of the electron energy band in

the absence of an electric field. This length arises when
we consider a cross section of the energy band locally tilt-
ed by the electric field: —A/2+Pi ~ E(6/2+Pi for an
energy level F. =const. Therefore, a new scaling parame-
ter y =/jb ee (i+(,1 enters the problem in addition to the
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