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Time-Dependent Perturbation Theory for Nonequilibrium Lattice Models
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We develop a perturbation theory for the asymptotic survival probability of an interacting particle sys-
tem which can become trapped in an absorbing state. The method is applied to a simple model describ-
ing the poisoning of a catalytic surface. Analysis of the resulting series (in powers of the annihilation
rate) leads to very precise estimates for the location of the critical point and the order-parameter ex-
ponent P. Results for similar models and other expansions are presented brielly.
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Nonequilibrium systems are presently under intensive
study in physics, chemistry, and biology [1,2]. Special at-
tention has been given to systems exhibiting nonequilibri-
um phase transitions. Models of these processes cannot
generally be studied via the traditional methods of statis-
tical mechanics; appropriate theoretical tools are current-
ly under active development. Some progress has been
achieved via field-theoretic renormalization-group meth-
ods [3-6], but while these methods are successful in pre-
dicting the possible universality classes for second-order
phase transitions, they are not very eAective in determin-
ing critical parameters or phase diagrams. It is thus very
important to develop new analytic methods which can be
relied upon as efficient calculationa1 tools. Here we
present a time-dependent perturbation theory which al-
lows us to derive high-order series expansions for the
asymptotic behavior of systems exhibiting a second-order
phase transition into an absorbing state. Analysis of the
series yields very precise estimates for the critical param-
eters.

The systems considered in this work are nonequilibri-
um stochastic lattice models or interacting particle sys-
tems [7] evolving according to a Markov process with lo-
cal, intrinsically irreversible transition rules. One of the
simplest such models is the A model [8], which was intro-
duced recently as a simplified model for the poisoning of
a catalytic surface. The A model is closely related to the
contact process [9] describing the spreading of an epi-
demic, to Schlogl's (first) model [10] of an autocatalytic
chemical reaction, to directed percolation [11], and to
Reggeon field theory (RFT) [12,13]. In the A model
each site can be either vacant or occupied, so that the
state of the system is characterized by occupation vari-
ables ja;] (i E Z", with a; =0, 1 corresponding to site i
vacant or occupied, respectively). The evolution of the
system is governed by simple local rules: Particles are an-
nihilated at rate A, independent of the states of other sites,
and vacancies become occupied at a unit rate, provided
that at least one nearest neighbor is occupied. As there is
no spontaneous creation of particles the vacuum is an ab-

P(t) ~ & "tir(at ""). (2)

Since the system is in the supercritical region there must

sorbing state for the Markov process. In addition to this
trivial state the A model has for sufficiently small X (in
the infinite-size limit) a nontrivial ("active") steady state
with a nonzero average particle concentration p. Monte
Carlo simulations [8] and steady-state series expansions
[8,14] for the A model and related models provide very
strong evidence of a continuous phase transition from the
active state to the absorbing state at a critical value X,.
This kind of phase transition is also found in more com-
plicated models for catalytic surface reactions [15,16].
As in equilibrium the behavior of the system near k, is
characterized by various critical exponents; e.g., the
steady-state concentration of particles (which is the ap-
propriate order parameter) decays asymptotically as
p cx: (A,, —2, ) as k A, Steady-state series expansions
[8,14] in 1= I yield A,,=0.5714 and P=0.277. This
places the 2 model in the same universality class as RFT
[12,13] and directed percolation.

Before venturing into a description of the time-de-
pendent perturbation theory we review the scaling behav-
ior of models exhibiting a continuous transition to an ab-
sorbing state. Following Grassberger and de la Torre
[13] we consider the asymptotic behavior of the model,
starting at t =0 with a single seed particle at the origin.
According to the usual scaling hypothesis, one expects
that any function of x, t, and 5 (A=A, , —

A, ) depends on
these variables only through x /t' and ht ' ', times some
power of x, t, or h„where v and z are new critical ex-
ponents. For the probability of survival, i.e., the proba-
bility that the system has not entered into the vacuum
state at time t, one expects

P(t ) cet 'p(At '1'), (1)
where 8' is another critical exponent, while p is a universal
scaling function. In the supercritical region (A, (A,, ) we
see that by setting itr(y) y 'p(y) we may rewrite (1)
as
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be a nonzero chance of survival; were this not the case
any configuration would eventually die out, contrary to
our knowledge that the system has an active steady state
in this region. Thus since P =lim, P(t) is finite,
lim~ y(y) is finite too, and we get

(3)

preserves positivity and normalization. Next we consider
the effect of the operators V and W on various config-
urations. W is simplest: Operating on a configuration (r)
containing m particles, it gives a sum of m configurations
(r') (each having one of the m sites vacated), minus m
times (r) itself:

m

W(r) = g (r ) —m(r) .

Consider a configuration (r) in which there are q vacan-
cies having at least one occupied nearest neighbor (i.e., q
sites where a new particle may appear). Operating on

such a configuration, V yields

V(r) = g (r;")—q(r), (12)

where (r") is a configuration with one of the vacancies
now occupied. Note that both W and V give 0 when

operating on the vacuum state IO).
There are several ways of expanding (7), e.g. , in terms

of t (short-time expansion) [20] or in terms of X or X

Here we consider the long-time behavior in the supercriti-
cal region. A more detailed account will be presented
elsewhere [21]. The supercritical expansion is obtained
by taking the Laplace transform of (7) and then treating
XW perturbatively. In this way we can derive an expan-
sion in powers of X for the ultimate survival probability
I' . Having derived such a series, we expect the critical
point to be first singularity on the positive-k axis. Con-
sider the Laplace transform of l~(t)):

A tla;) =(I —a;)Ia;+1&,

w;Ia;&=a;la; —i&.
(4)

The state of the system at time t is

I
+(t ) ) =g p([a;],t ) I [a;]&, (s)

where the sum is over all configurations and p([a;],t) is
the probability distribution on configuration space. The
evolution of the probability distribution is governed by
the master equation

d I
'P (t )& (6)
dt

I+(z))=„, e "l~(t))dt=(z —S) 'I+(0)). (i 3)

We focus on the initial distribution IA'o) which assigns
probability 1 to the configuration with the origin occu-
pied, and all other sites vacant. Assuming that I+(z))
can be expanded in powers of A. ,

I+(z)) = I+0)+) I+i&+~ I+2)+ . (14)
which has the formal solution

Ie(t)& =e~'le(0)&,
we find upon inserting (14) and (8) in (13) that

7
I4,) =(z —v) '

IXO& (is)
where I+(0)) is the initial probability distribution. The
evolution operator S for the one-dimensional 2 model can
be written as

and

I4„&=(z—v) 'wl4. , &, n~ i. (i 6)

It can, however, be shown [13] that P and p have the
same critical exponent, leading to the scaling relation
p=v6.

Markov processes in many-particle systems can be con-
veniently described via an operator formalism [17-19],as
demonstrated by the successful application of the formal-
ism to nonequilibrium steady states of interacting particle
systems [14] and the dynamics of random sequential ad-
sorbtion [20]. In this paper we use the formalism of Ref.
[14] in which only single occupancy of sites is allowed.
The basis states of a given site i E Z are I a;) with
o.; =0, 1 when site i is vacant or occupied, respectively.
Any configuration [cr;1 of the system can be written as a
direct product I [a;]&=Q; c z~ la;).

Creation and annihilation operators for site i are
defined in the obvious manner:

S =XW+ V,

where

W=g(1 —~,')W, ,

and

(8)

(9)

(io)

As can be seen from (15) and (16) the operator
(z —V) ' plays an important role in this expansion. The
eff'ect of this operator on a configuration (r) can be found
using the identity

(z —V) '(r) =z '(r)+z '(z —V) 'V(r). (17)

Inserting (12) and rearranging yields

In this decomposition W only annihilates, and V only
creates particles. The evolution operator S fulfills the
conditions required for a probability interpretation, i.e., it

(z —V) '(r) =z (r)+(z —V) ' g (r;"), (18)
i=I

where z~=—(z+q) '. If we let (n) denote a configuration
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with a string of n occupied sites surrounded by vacancies
we find, in particular,

(z —V) '(n) =zq(n)+2zq(z —V) '(n+ I)

=g 2'z7z+
' (n+ j) .

j~o
With n = I, the right-hand side is ~+p).

From (19) it is clear that ~4'p) involves infinitely many
configurations so it is impossible to calculate 4 (z). What
we can calculate, however, is the extinction probability
p(z), i.e., the probability of having entered the absorbing
state. The k7 term in the expansion for P(z) is simply the
coefficient of ~0) in (4'/). As each application of IV an-
nihilates at inost one particle it follows from (16) that in

a calculation of p(z) to 6(X,") we can discard (j) for

j) n in the expression for (+p). Similarly, we can ignore
all configurations with more than n —k occupied sites in

(+I,), as none of these contribute to the extinction proba-
bility. Further simplifications arise if we just focus our
attention on the ultimate survival probability P . Taking
the Laplace transform of (3) shows that P = I
—lim, pzp(z), which makes the application of Eq. (18)
much simpler, as the algebraic factor z~ reduces to the
numerical factor I/q.

The algebra involved in the calculation of p(z) rapidly
becomes very complex. The steps used to generate the
series are, however, simple enough to be codified as a
computer algorithm. We have derived the series expan-
sion for lim, pzp(z) to 24th order in X (it takes a little
more than 16 min on an IBM 3090). The resulting series
for the ultimate survival probability is

—0.493955 761 316871 9A, —0.654646061 957018 8A,

—0.916062 198 145 291 2A, —1.356 981 446 217 977k
—2.052 404 865 011 525K, —3.088 808 063 863 888K, '

—4.711 980 262 430 326k ' ' —7.373 187 827 483 772K '

—
1 1.640 987 437 779 37K. ' —18.313746 552 869 35K, '

—29.096 960952 664 92K, ' —46.840 949 230 91073K '

—75.462 702 13626647k ' —121.631 472444 371 8A
i s

—197.895 341 134 1986A,
' —323.096 649 217007 7A.

—527.743 175 233 9135X ' —864.449 724083073 8X

—1427.559659906972K, —2342.271 155757435k, +8(A, ) .

We have formed various Pade approximants to the series
for (d/dk)lnP, thus obtaining unbiased estimates for k„
the first pole on the positive-A, axis, and P, the residue of
the Pade approximant at this pole. The results of this
analysis are summarized in Table I. The Pade approxi-
mants are in excellent agreement yielding the very precise
estimates X, =0.574141(2) and P =0.27674(2), where
the uncertainty on the last digit is given in parentheses.

Better estimates for the critical exponent can often be
obtained if one has prior knowledge of the location of the
critical point. In such a situation one often looks at Pade
approximants to the series for (X, —X)(d/dk)]nP which,

t when evaluated at X„yields the critical exponent P. In
principle we do not have any prior knowledge of A,„but
we have used this approach in a modified form [22]. We
form the series mentioned above using a trial value A,, for

0.2769

0.2768—

TABLE I. Unbiased estimates for A, , and P derived from
Pade approximants to the series (d/d) )InP for the A model.

Pade approximants

0.2767-

[10,11]
[I I, IO]
[11,11]
[11,12]
[12,11]

0.574 143
0.574 141
0.574 142
0.574 139
0.574 142

0.276 76
0.276 74
0.276 74
0.276 72
0.276 75

0.2766 I

0.574 14

2393

0.574 13 0.574 15

C

FIG. 1. Biased estimates P as a function of X, derived from
Pade approximants to the series (X., k)(d/dk)lnP evaluated
at X, .
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Exponent 8 model

0.2767
1.731
0.318
1.264

cp
0.2769
1.735
0.313
1.265

N3 model

0.2771
1.737
0.312

TABLE II. Estimates for various critical exponents for the 8
model, the contact process, and the N3 model.

well as applications to nonequilibrium models in two di-
mensions and models which include diAusion of particles,
is currently under investigation.
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A., and find the corresponding P. For each Pade approxi-
mant we obtain P as a function of k, . In a plot of P vs X,
we expect the curves to intercept at the point (A.„P).
Figure 1 shows the result of this approach. All the curves
intercept very nicely for X, =0.5741420(5) and P
=0.276750(5) in excellent agreement with the unbiased
estimates.

Our results for X, and P are consistent with earlier
studies of the A model which found (using steady-state
series expansions [8,14]) 1,=0.5414 and P=0.277(1).
Studies of Reggeon field theory yielded P =0.277(2)
(from series analysis of generalized susceptibilities [12]),
and P=0.273(6) (from Monte Carlo simulations [13]).
For directed percolation the best (to our knowledge) re-
sult for P is 0.2765(5) [23].

We conclude with a brief summary of results from ex-
pansions for similar models and expansions in the subcrit-
ical regime which enable us to estimate the critical ex-
ponents v, g, and z. The subcritical expansion is very
similar to the supercritical expansion, as one ends up with
the expressions (14)-(18),but with the roles of V and W
interchanged and k replaced by p =A. '. As 8' annihi-
lates particles (+o) becoines much simpler and it just con-
sists of the one-particle state and the vacuum. Details of
this expansion will be given elsewhere [21]. We have
studied two models closely related to the A model, the
contact process (CP) and the N3 model. In all the mod-
els particles spontaneously annihilated at rate k and emp-
ty sites with t~o occupied neighbors are filled at unit rate,
but sites with only one occupied neighbor are filled with
rate 1 in the A model, with rate & in the CP, and with
rate 4 in the N3 model. We expect these models to show
the same critical behavior, a notion which is strongly sup-
ported by steady-state series expansions [14]. Our esti-
mates for the critical exponents are summarized in Table
II. The nearly identical exponent values for these dif-
ferent models strongly supports the hypothesis of univer-
sality; the small variation among exponent estimates
presumably reflects the need to consider corrections to
asymptotic scaling in the analysis of series. This issue, as

"' Electronic address: dickmanlcvax. cuny. edu.
~b~ Electronic address: injlccunyvm. cuny. edu.

[1] G. Nicolis and I. Prigogine, Self Organ-ization in lVon

equilibrium Systems (Wiley-lnterscience, New York,
1977).

[2] H. Haken, Synergetics (Springer-Verlag, New York,
1983).

[3] H. K. Janssen, Z. Phys. B 42, 151 (1981); 58, 311
(1985).

[4] H. K. Janssen and B. Schmittmann, Z. Phys. B 64, 503
(1986).

[5] P. Grassberger, Z. Phys. B 47, 365 (1982).
[6] G. Grinstein, Z. -W. Lai, and D. A. Browne, Phys. Rev. A

40, 4820 (1989).
[7] T. M. Liggett, Interacting Particle Systems (Springer-

Verlag, New York, 1985).
[8] R. Dickman and M. Burschka, Phys. Lett. A 127, 132

(1988).
[9] T. E. Harris, Ann. Prob. 2, 969 (1974).

[10] F. Schlogl, Z. Phys. 253, 147 (1972).
[11]J. L. Cardy and R. L. Sugar, J. Phys. A 13, L423 (1980).
[12] R. C. Brower, M. A. Furman, and M. Moshe, Phys. Lett.

76B, 213 (1978).
[13] P. Grassberger and A. de la Torre, Ann. Phys. (N. Y.)

122, 373 (1979).
[14] R. Dickman, J. Stat. Phys. 55, 997 (1989).
[15] R. M. Ziff', E. Gulari, and Y. Barshad, Phys. Rev. Lett.

56, 2553 (1986).
[16] I. Jensen, H. C. Fogedby, and R. Dickman, Phys. Rev. A

41, 3411 (1990).
[17] M. Doi, J. Phys. A 9, 1465 (1976);9, 1479 (1976).
[18] P. Grassberger and M. Scheunert, Fortschr. Phys. 28, 547

(1980).
[19] L. Peliti, J. Phys. (Paris) 46, 1469 (1985).
[20] R. Dickman, J.-S. Wang, and I. Jensen, J. Chem. Phys.

94, 8252 (1991).
[21] I. Jensen and R. Dickman (to be published).
[22] J. Adler, M. Moshe, and V, Privman, in Percolation

Structures and Processes, edited by G. Deutsher, R. Zal-
len, and 3. Adler, Annals of the Israel Physical Society
Vol. 5 (Hilger, Bristol, 1983).

[23] J. W. Essam, K. De'Bell, J. Adler, and F. M. Bhatti,
Phys. Rev. B 33, 1982 (1986).

2394


