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Tunneling and Superconductivity of Strongly Repulsive Electrons
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We show that superconductive pairing is possible in the presence of an arbitrarily strong short-range
repulsion between electrons if the gap is an odd function of k —kF. We discuss how the behavior of
A(k —kF) close to the Fermi surface is related to (i) the low-energy tunneling density of states, and (ii)
the attractive part of the potential. We show that some features of the tunneling data in high-T, cu-

prates, including the fact that the maximum hardly moves when T approaches T„are natural conse-
quences of this type of pairing.

PACS numbers: 74.65.+n, 73.40.Gk, 74.50.+r

In the BCS theory of superconductivity [ll, pairing is
due to an attractive potential between electrons. Al-
though the interaction does not have to be attractive for
all wave vectors, it is often assumed that the efTective in-

teraction close to the Fermi surface has to be attractive at
least in some region of the phase space in order to get
pairing. According to this argument, the only way to get
superconductivity for strongly repulsive electrons is to
generate an attractive interaction that dominates the
repulsion in some part of the phase space. A number of
such scenarios have been put forward in the context of
high- T, cuprates.

In this paper, our first aim is to show that this argu-
ment is wrong, and that pairing is possible even if the
repulsive part of the potential is arbitrarily strong. To

avoid unnecessary complications, we concentrate on a
weak-coupling theory, in which case the gap function
A(k, cu) depends only on k, and we furthermore assume
that h, (k) is a function of eq only, where e1, is the quasi-
particle energy measured from the Fermi level. For free
electrons, this means that the gap is isotropic.

At T =0, the gap function is found by solving the equa-
tion

~(~) = —N(0)„d~'v(~, ~')
r ~, g(&~)

C 2e'+4 e'

where, as usual, the density of states N(c) is assumed not
to vary significantly within m, of the Fermi level.

We start by studying a toy model where V(e, e')

= V~(e, e')+ V2(e, e') is the sum of a repulsion and an at-
traction defined by

U )o if I ~I, l~'I &»,
V~(e, e') = '

0 otherwise,
(2)

,
—V & o if I ~l, I e I & ez and I e e I

& &2,
V2(e, e') = '

0 otherwise.

In what follows we take ro2=ruq for simplicity and we look for even and odd solutions for A(e). The BCS type of solu-

tion is even, and we start with this case. The gap equation can then be written (e) 0)

a, (E') fo QP2 a, (e')(0)UN(0)dC2
2

iy2+VN(0)l&[V2(E'6)+U2(IEe')] [~'2+ g (&~) 2] I/2
(4)

where U2(e, e') = —V2(e, e')/V is positive and of order 1.
A quick inspection of the signs tells us that the V=o
equation has only h, (e) =0 as a solution, while the U=O
equation has a nonvanishing solution. So, increasing U at
fixed V, we expect to reduce the gap, until U reaches a
critical value U, where the only solution is d„(e) =0.
This is eA'ectively confirmed by a numerical analysis of
Eq. (4). So, pairing of even symmetry is possible only if
the repulsion is not too strong.

In the odd case, the situation is quite diA'erent. The
repulsive part of the potential is even in t

' and drops from
the equation. With the simple choice of V2 of Eq. (3),
the resulting equation can be solved analytically and has

e"t[VN(0)/2]' —
1 j '~ if I cl & cup,

ao(e) =
,0 otherwise.

(5)

Let us emphasize that this result is independent of U, so
that there is actually pairing for arbitrarily strong repul-

This solution is lower in energy than 6=0, with a con-
densation energy

W(~o) —IV(~ =O) = —~,' vN(o)
vN(o) 4

+
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sion. In particular, for co~ ~ cop and U& V, there is pair-
ing although the interaction is everywhere repulsive. An
odd gap does not care about the absolute value of the in-
teraction, it is sensitive only to its variation. If particle-
hole symmetry is present in the normal state, it is broken
by an odd gap. However, the quasiparticle energy
remains particle-hole symmetric; only Josephson tunnel-
ing can reveal the fact that the gap is odd around the Fer-
mi surface. More generally, odd pairing can be expected
to occur when (i) V~ (t. , e') is large, so that even pairing is
impossible; (ii) V~(e, —e')=Vi(e, e'), so that the repul-
sion cannot reduce hp(e) significantly; (iii) V2(e, —e')
&V2(e, e'), so that the attraction is effective in building
up hp(e). The first two conditions are met by a strong lo-
cal repulsion, as in the large-U Hubbard model, while the
third one is not very restrictive. Attractions via exchange
of bosons typically yield

V2(e, e') ~ 1

(E E) CO

(7)

(8)
N(O) ~+h(~)dh(~)/d~ '

where E = [e +h(e) ] ' . From Eq. (8), it is clear that
if h(e) CX:sgne~a~', then N7(E) a- [E~ '+' '. Hence, a
natural consequence of odd pairing is that there is no
well-defined gap in tunneling [8]: If a=1 (toy model),
one has gapless superconductivity [N7.(E) =2/VN(0) for
E & co2VN(0)/2, and 1 otherwise]; if a & 1, the density of
states increases from Ni-(E) =0 at E=0. Experimental-
ly, there is evidence that the tunneling density of states of
high-T, cuprates vanishes only for E =0 (at T=o).
While this part of the data is consistent with odd pairing,
this fact alone does not provide strong evidence in its
favor. It is well known that any gap function with zeros
on the Fermi surface will have the same effect. Odd pair-
ing is a special case where the gap function vanishes
everywhere on the Fermi surface. An alternative ex-
planation of the nonvanishing tunneling density of states
has been proposed by Kirtley and Scalapino [9].

There is, however, another particular feature of the
tunneling density of states in high-T, cuprates, namely,
the fact that the maximum hardly moves when the tem-

which indeed fulfills the third condition. "Extended s-
wave" pairing [2] on a square lattice with nearest-
neighbor hopping is an example of odd pairing when
there is one electron per site [3]. The type of odd gap we

are considering is to be distinguished from the odd-in-

frequency gap discussed by Berezinskii [4] and, more re-
cently, by Allen [5].

High-T„cuprates have been proposed as candidates for
this new type of pairing, inost recently by Anderson [61.
To go beyond the hypothesis, we start by looking at a
physical property that is very sensitive to the details of
the gap function, namely, the tunneling density of states
Nr(E). When h depends on e, Nr (E) is given by [7]

[~&2+h(~&) 2] I/2
xtanh (9)

for a given potential V2(e, e'). As we do not want to
study the gapless case, we cannot use the potential of
Eq. (3), but first have to find a form of the interaction
that yields a power law h(e) eesgne~a~', a & 1. Since
V2(e, e') is a function of two variables, there are infinitely
many solutions, and further constraints are needed to
determine the interaction completely. The ultimate goal
is to find a microscopic model that produces such an in-
teraction, but this difficult problem is beyond the scope of
the present analysis. In fact, for our purpose, which is to
illustrate the T dependence of Nr. (E), the precise form of
V2(e, c') is unimportant. A model potential that is simple
and not too singular would be sufficient [12]. Guided by
the type of attraction that arises from exchange of bo-
sons, we look for solutions V2(e, e') that depend only on

~e
—e'~. The equation to be solved is again Eq. (1), but

h(e) is now a given function with a power-law singularity
at e=o, and V(e —e') is the unknown. By extending the
integration limits to infinity [with h(e) =0 for ~e~ & ai, ],

perature approaches T, . In regular BCS, the gap h(T)
vanishes at T„and the maximum of the tunneling density
of states, which occurs for Ep =h(T), moves to the Fermi
level as T T, . If h(k;T) vanishes on part of the Fermi
surface, the peak occurs for Ep =max/, =I„h(k;T) and, as
in the regular BCS case, moves to the Fermi level as
T T,. This is why we have not considered this type of
gap function (e.g. , d wave) for which the repulsion drops
from the gap equation for symmetry reasons. To our
knowledge, the only explanation so far has been proposed
by Allen and Rainer within a conventional strong-
coupling approach [10].

Let us see what kind of T dependence one gets with
odd pairing. As the gap vanishes everywhere on the Fer-
mi surface, the maximum in N7. (E) can no longer occur
for Ep =maxi, -/„h(k) because this quantity vanishes. In
fact, if the gap reaches its maximum value hp for an ener-

gy ep, it is easy to see that the maxiinum in Ni-(E) occurs
for Ep=(ep+hp) '/ . If the gap builds up very fast, i.e.,
if ep«hp, then one recovers the BCS result Ep=hp. Oil
the other hand, if the energy at which the gap is max-
imum is much bigger than the gap itself, ED=so. But as
T T„d 0, and this condition is always satisfied, so
that ED=co does not go to zero with the gap. In princi-
ple, eo is itself a function of T. But as we shall see in an
example, the main effect of temperature is to reduce the
overall magnitude of the gap function, while its shape,
and in particular the energy ep where h is maximum, is
essentially unaff ected [11].

To illustrate this point, we need to solve the T-
dependent gap equation,

t' ru, h(&')h(.) = -N(O)„d. V,(..)c'2f'+hE')]
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tion A(k —kF). More work is needed to propose realistic
interactions leading to odd pairing and to analyze other
properties within this context.
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