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At strong magnetic fields, Landau quantization invalidates the semiclassical approximations which un-
derly the Ginzburg-Landau (GL) theory of the mixed states of type-1I superconductors. We have solved
the microscopic mean-field equations for the case of a two-dimensional electron system in the strong
magnetic-field limit. For delta-function attractive interactions there exist n + 1 pairing channels in the

nth Landau level. For n> 0, two channels share the maximum 7. and the order parameter differs

markedly from expectations based on GL theory.
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The microscopic justification [1] of the Ginzburg-
Landau (GL) description of the mixed state of type-II su-
perconductors [2] requires a semiclassical approximation
for the magnetic field which completely neglects Landau
quantization of the kinetic energy. The possible impor-
tance of Landau quantization was recognized some time
ago [3] when it was realized that de Haas-van Alphen-
like oscillations could occur in the superconducting tran-
sition temperature T.,(H) in an external magnetic field.
Experimental evidence for the importance of Landau
quantization was later found by Graebner and Robbins
[4], who observed de Haas-van Alphen oscillations in the
mixed state of the layered dichalcogenide 2H-NbSe;.
Recently, Rasolt and co-workers [5,6] have brought at-
tention to novel aspects of superconductivity in the limit
where few Landau levels are occupied and 7., can be
comparable [7] to the zero-field 7,.. The emphasis of pre-
vious theoretical work in this regime has been on studying
the influence of Landau quantization on [6,8] the super-
conducting transition temperature [9] or on the inclusion
of Landau quantization in the estimation [6,8] of the
two-particle and four-particle kernels of the Gor’kov
equations. In this Letter we present the results of the
first self-consistent solution of the microscopic mean-field
equations for the superconducting state in the strong-field
regime. We obtain results for the spatial dependence of
the order parameter and for the quasiparticle band struc-
ture of the vortex-lattice state which is of interest in con-
nection with recent experimental [10] and theoretical
[11] studies of the local density of states in a vortex core
[121.

We consider a two-dimensional [13] electron system in
a uniform magnetic field [14] with a delta-function at-
tractive interaction of strength ¥ which acts only between
states whose bare energies ¢ satisfy |e —u| < h Qp, where
u is the chemical potential and Qg is the cutoff frequency
for the attractive interaction. The strong-field limit [15]
is reached when w.=eB/m*c exceeds Qz/2 so that pair-
ing can occur only within a single Landau level. To de-
scribe the vortex-lattice state it is convenient to choose a

Landau gauge [A =(0,Bx,0)] and expand the quasi-
particle amplitudes in the form wu(r)=Xyuxox(r),
v(r) =X xvxoX(r), where ¢x(r)=explik,y)y,(x—X)/
(L,) ' denotes the single-particle eigenstate in the nth
Landau level with guiding center X. (Here y, is a
harmonic-oscillator eigenstate at frequency . and / 2
=hc/eB and X=—k,/%.) In this representation the
Bogoliubov-de Gennes (BdG) equations [16] in the
strong-field limit take the form [17]
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where

Fxx=V [dre3@e(awm. (3)
In Eq. (3)

A(r) =x'2,:xAXI‘X¢X'(r)¢X(r) , 4)
where

Ax' x =§tanh(ﬂE,,,/2)v,\"f’gmux,m , (5)

and the sum over m is over positive-energy solutions of
the BdG equations. (We discuss only the case of the zero
g factor here. Similar results can be obtained whenever
the spin splitting and the Landau-level splitting are com-
mensurate. Strong-field solutions can also be found, for
parallel-spin pairing within a spin-polarized Landau level
[18], which do not require a special value for the g fac-
tor.)

Many qualitative features of our results follow from
the following identity [18]:
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where — V¥/V is the Haldane pseudopotential [19] for
angular momentum 2j in the nth Landau level for an at-
tractive delta-function potential of unit strength. Equa-
tion (6) can be derived by making a transformation to
center-of-mass and relative coordinates for a pair of par-
ticles in a strong magnetic field [18]. In Eq. (6),

2, (V) =(=1)U/N2) Py, (Y/N2) @)

which are orthonormal and complete for even functions,
and V% =—VN;N,-;/4nl*=—AN;N,-;ho./2, where
Nj=Qj—1)1/2/j' and A=V/ho:2xl’. Expanding
Ax+yvnx-vi2=2;=08;xj(Y), Fxivnx-vi2=2;=oF;
xx;(Y), it follows from Eq. (6) that F;=—V%A;, and
that F;=0 for j > n. Pairing occurs in even relative an-
gular momenta from 0 to 2n. Although we have derived
the relationship between F; and A; in terms of Haldane
pseudopotentials here for the special case of delta-
function attractive interactions, it is valid [18] for in-
teractions of any range.

Solutions of the BdG equations may be labeled by total
momentum along the y direction. Solutions correspond-
ing to different total momenta are degenerate. Pairing in
total momentum zero is not preferred. The condensation
energy per electron corresponding to a solution at fixed
total momentum vanishes in the thermodynamic limit. In
order to get a solution with an extensive condensation en-
ergy in mean-field theory, it is necessary to break transla-
tional symmetry and have pairing at a discrete set of total
momenta; the state with this property is the vortex-lattice
state, which we discuss below. We first consider the solu-
tion at some particular total momentum, which we label
as 2X. Then in Egs. (1) and (2) ux—y/, is coupled only
to vx+y/2 and the BdG equations reduce to the familiar
2x2 form of BCS theory. This leads to

n

A= 2 Kby ®)
=

where

Kjj=—7% VZ»rdexj(Y) {tanh[ 5 BEMV/E(Y)}y,;' (V) ,
9

E(Y) =(|F,\'—y/2‘x+y/2|2+§2)”2, and §=hwlv(n+ |2_ )
—u. The solution of the BdG equations is completely
specified by the n+1 A; parameters which are easily
determined by solving Egs. (8) and (9) iteratively. The
order parameter for this solution is given by [18] A(r)
=Y, A;4¢(r), where

A (0) = (1/4712) (V2N — ;N; 1D V2 exp(— i2X,/1%)
X Y- p(V2(x — X)) . (10)

For this solution the order parameter is nonzero only near
the line x =X.

To solve for T. we linearize Eqs. (8) and (9). In this
limit K ; is independent of the A; and diagonal, so that
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in channel j, T, satisfies
[tanh(&/2kpT.)/E] ~' = § ho AN, - ;N;. an

T. is largest in the j=0 and j=n channels which have
the same T,. In Fig. 1(a) we plot A; vs £ at T=0, and in
Fig. 1(b) we plot A; vs T at £=0 for the n=0 and n=1
Landau levels. Solutions occur at sufficiently low T as
long as |§| <Ahw.N,/4. For n=1 there are two solu-
tions of the gap equations corresponding to the two
different channels within which pairing occurs. Since
both channels have the same 7., they remain strongly
mixed even as T approaches 7.. One solution is dom-
inantly d wave (j =1), but the lowest-energy solution has
its largest amplitude in the s-wave channel whose order
parameter has the more complicated spatial dependence.

We now turn to the vortex-lattice case. Following GL
theory we expect to find solutions of the BdG equations in
which the superconducting order parameter can be writ-
ten as the sum of solutions at different guiding centers
separated by lattice constant a,. We write

Ar) =X A, expliot DAYL, (1), (12)
tj

where the A; need not be exactly the same as those ob-
tained from the single-guiding-center calculation because
of interference between solutions at different total
momentum. (¢ =0 provides the most convenient descrip-
tion of the square vortex lattice and ¢ =x/2 describes a
class of lattices including the triangular vortex lattice.)
For ¢ =0 the BdG equations can be reduced to 2x2 form
by making a unitary transformation from the guiding
center representation to a representation of magnetic
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FIG. 1. Solution of the BdG equations for a fixed total

momentum in the =0 and n=1 Landau levels: (a) order pa-
rameters in s and d channels vs £ at T =0; (b) order parameters
in s and d channels vs T at £=0. The quasiparticle energies
and A(r) can be expressed in terms of these parameters (see
text).
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Bloch states:

Pk, .k, (1) =(1/J§)Zcxp(ikxsax)¢_,zky +5a, (1) . (13)
In Eq. (13), |k.| <n/a., |k,| <a./21%. S=L./a,. It
follows from summing solutions over the magnetic Bril-
louin zone that the assumed form for A(r) is self-
consistent [18] and that the gap equation is of the same
form as in Eq. (8) with K ; replaced by

VZJ Z”Iax Z tanh[ﬂE(k)/Z]
L.L, K E()

where E(k)=(&2+|Fy|?)'? defines the quasiparticle
band structure. Here Fy=2; F;x;(k) and

2/ (k) =3 x; 2k, 1%+ 2ta, Jexp(i2tk.ay) .
t

(14)

Kfy= 2 Kypk),

(A similar expression can be derived [18] for ¢ =n/2.)
Again, the full solution, including the quasiparticle band
structure, can be expressed in terms of a small number of
parameters whose values are easily determined. In the
linearized regime, Eq. (14) reduces to Eq. (9), so that the
transition to the vortex-lattice state is second order as ex-
pected.

In Fig. 2 we present contour maps of the order parame-
ter A(r) for the square vortex-lattice solution of the BAG
equations at 7=0 and £=0 in the n=1 Landau level.
(The n=0 order parameter has the form assumed in GL
theory.) The lowest-energy solutions for both square and
triangular lattices are purely s wave. Whenever a sub-
stantial s-wave component is present A(r) will differ qual-
itatively from expectations based on GL theory. For the
square lattice each unit cell contains two vortices, one
with vorticity 2 and one with vorticity —1. The solution
in the triangular lattice case [18] has three vortices per
unit cell, two with vorticity 1 and one with vorticity — 1.
For n=1 the triangular lattice has a larger condensation
energy than the square lattice. The lowest-energy solu-
tion for n=1 occurs for a rectangular cell with an aspect
ratio (2ax/a,) of ~5.4, compared to ~1.73 for the tri-
angular lattice, and has mixed s-wave and d-wave charac-
ter [18].

The surprising existence of superconductivity at ex-
tremely strong magnetic fields is due to the increase in
the density of states at the Fermi level which tends to
destabilize the normal state of electrons. The tendency
toward destabilization is especially severe in layered
structures where the density of states diverges as the in-
terlayer hopping weakens. In the two-dimensional limit
treated here, the BCS model reduces to one in which we
need to treat attractive interactions among electrons
which share the same kinetic energy. Except for the sign
of the interaction, the problem is exactly that encoun-
tered in the fractional quantum Hall effect. In the re-
pulsive interaction case, the mean-field state [20] is a
charge-density wave which breaks translational invari-
ance. Except at small filling factors, however, the true
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FIG. 2. Contour maps of the absolute value of A(r) obtained
by solving the BdG equations in the strong-field limit at
&=T =0 within the n=1 Landau level for square vortex-lattice
states. The + and — signs indicate the vorticity at zeros of the
order parameter. a.a, =l

ground state is a liquid in which the probability of finding
electrons in states of low relative angular momentum is
minimized. It is likely that the mean-field states found
here are sometimes preempted by liquid states, possibly
like the hollow core model state found by Haldane and
Rezayi [21], in which the probability of finding electrons
in states of low relative angular momentum is maximized.
If so, this strong-field regime may provide a concrete ex-
ample of quantum melting of the vortex lattice. It may
be that, as in the repulsive interaction case, the physics is
controlled by the commensuration between particle densi-
ty and vortex density which can lead to peculiar types of
off-diagonal long-range order [22].
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