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Novel Axisymmetric Coherent Vortex State in Arrays of Josephson Junctions Far from Equilibrium
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We present a numerical study of a topologically disordered, overdamped, array of Josephson junctions
subjected to dc and ac currents. We find that vortices are nucleated by the ac current, apart from the
ones produced at defects. After a complex transient, these vortices settle into a parity-broken time-
periodic, axisymmetric coherent vortex state characterized by rows of vortices lying along a tilted axis.
This locked-in state leads to giant half integer-pseudosteps in the I-V characteristics that are hysteretic
in nature. Possible connections of these results to recent experiments are discussed.

PACS numbers: 74.50.+r, 74.60.Jg, 85.25.Dq

Arrays of Josephson junctions (AJJ) have been the
subject of considerable recent interest, both theoretically
and experimentally [1]. Many of the early studies in AJJ
were aimed at testing the predictions of the equilibrium
long-range phase-coherent transitions expected to take
place in these systems [21. More recently, novel phenom-
ena have been discovered in the dynamic responses of the
arrays subject to time-dependent periodic probes. Giant
Shapiro steps (GSS) in the I-V characteristics of periodic
proximity-effect AJJ have been measured in zero [31 and
rational frustration magnetic fields [4]. These results
have led to a series of numerical and analytic analyses
that have for the most part been successful in explaining
the GSS results [5,6]. One exception is the recent report
of half-integer pseudosteps seen in Nb-Au-Nb AJJ [7].
In this paper we present results that yield half-integer
pseudosteps that may be related to these experiments.

Here we study the dynamics of defect and current-
nucleated vortices as a result of a current I, =Id, +I„.,
xsin(2xvt), applied uniformly from the bottom of the
AJJ along the y direction. The formation of vortex pairs
by defects in a dc current at zero temperature was stud-
ied recently by Leath and Xia [8]. These authors em-
phasize the formation of these excitations as an example
of breakdown phenomena. The new element in our inves-

tigation is that of adding an ac current to the study of the
dynamics of the defect-generated vortices in AJJ. It
turns out that adding an ac current changes the physics in

a fundamental way as we shall discuss below. We have
studied the dynamics of the AJJ when we have one, two,
three, or all the lattice sites randomly displaced from
their periodic positions. We have found that after a tran-
sient time that depends on the number of defects, the dy-
namics tends to a nonequilibrium time-periodic state with
a well-defined vortex geometric structure that is qualita-
tively and to some extent quantitatively independent of
the nature and number of defects in the system. This
novel state leads to half-integer giant pseudosteps in the
I-V characteristic. This state is in many respects
diA'erent in nature from the GSS mentioned above and

we shall call it an axisymmetric coherent vortex state
(ACVS). Since the existence of the ACVS does not ap-
pear to depend qualitatively on the number of defects in
the lattice, most of our discussion here will be related to
the one-defect problem, but we present some results for
the all-site-disordered case as well. A more extensive and
detailed discussion of all the cases studied will appear
elsewhere [9].

The model is defined by an L L~ AJJ, where the loca-
tion of each superconductor forming the junctions is given

by a two-dimensional vector i The pre. sent study is based
on the resistively shunted junction model that has been
successful in explaining the GSS. The equations of
motion are given by

(la)

where the action S is defined as

S=g [I; cos(P; +2zcf;, )+"p; I; ].
/J 2e

(lb)

In Eqs. (1), P;~. =P; —
P~. is the phase difference between

the superconductors i and j making the junction, I;, is the
total current Aowing between them, I;j is their critical
current, and I;~. =A/2eR;J with R;~. their normal-state
resistance. The Gaussian random variable q;j represents
thermal Auctuations with covariance

[ri;I(i)ril, &(r')] =8;I t, b(t r')It'k8T/4e'RI, —
I .

The eAect of a transverse magnetic field is given by the
line integral f~ =(I/@o)f~A dl, with . A the magnetic
vector potential, and @0 the Aux quantum. Current con-
servation is given by Kirchoff's conditions at each lattice
site, Qil~~. =I "', with I "' the external current at site i
The eAect of the applied current I, enters as boundary
conditions at the bottom of the array while the voltages at
the top of the array are set to zero. Most of our calcula-
tions utilize periodic boundary conditions, but we have
also compared our results when we use free boundary
conditions. We have found, however, that since the lat-
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tices we are able to simulate are relatively large, there are
no qualitative differences between the two types of
boundary conditions. We approximate R;~ =R and I,~
=I,. All equations are rewritten in dimensionless units
with time normalized by the natural frequency vo

=2eRI, /ft, the currents by I, (and denoted by id, and
i „),. and temperature by hl, /2kge. The time-averaged
voltage (V) is normalized by (hv/2e)LJ, so as to assume
integer values at the zero-field GSS.

It turns out that being able to simulate large lattices is

important for finding the ACVS. We solved the equa-
tions of motion given in Eqs. (1) by using a variation on
the pseudospectral method [10]. Our method consists of
calculating the fast Fourier transform (FFT) of the equa-
tions of motion along the x direction, solving the tridiago-
nal equation for p along the y direction, and then carry-
ing out the time integration using a fourth- or second-
order Runge-Kutta (RK) method. Eikmans and van

Himbergen [6] have applied a similar method by doing
the FFT along the x and y directions. Our method shows
an improvement of about 30% over theirs. %e have also
done calculations at finite temperature, extending the
second-order RK algorithm developed by Greenside and
Helfand [11]. The time steps taken in our calculations
ranged from vphE =0.1 to 0.01 and typical runs used
ranged from one to several thousand time steps.

%'e now discuss our results starting with the one-defect
case. We produce the defect by moving a lattice site ra-
dially away from its periodic position. This only changes
the f~ in Eq. (1). By taking integer f 's, with f defined as

f=+/@o, where tli=gptg)f~ , and P(R) .denotes the pla-
quette located at R, this change is only felt along the
bonds linked to the defect. Thus when we talk about hav-

ing or not having a defect we mean having f an integer or
equal to zero, respectively. We take the defect to be ei-
ther at the center of the lattice or oA center. It turns out
that the location of the defect site does not affect the for-
mation of the ACVS. In Fig. 1 we show the correspond-
ing results for the I-V characteristics for diferent cases.
Figure 1(a) shows the GSS for the periodic case for com-
parison. In Fig. 1(b), for the one-defect case, we clearly
see new pseudo half-integer steps (PHIS) at voltage
values (V) = —,

' and —,'. We see the PHIS for higher
currents although less clearly. A blowup of Fig. 1(b) is
shown in Fig. 1(d), showing the hysteretic behavior for
increasing and decreasing dc current. This hysteretic be-
havior is not seen in the GSS. We call them pseudosteps
because their slope is not exactly zero as in the GSS. The
oscillations below the (V) =

& PHIS are characteristic of
the specific location of the defect. These oscillations get
smoothed out when increasing the number of defects as
seen in the glass case shown in Fig 1(e). We .carried out
a size analysis of the width at the n= 2 PHIS and found
that there is a minimum critical size above which it be-
comes visible. These results are shown in Fig. 2(a). Here
the need to have an eScient algorithm allowing large lat-
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FIG. 1. Zero-temperature I-V characteristics for square ar-
rays of size 40&40, with i,,=l, v=O. I vo, and periodic bound-
ary conditions. (a) Periodic case (f=0). (b) One defect in the
center with r=0. 1, 0=90', and f=2. (c) Glass case with
a=0.1. The results correspond to quenched averages over five

samples. For clarity the curves in (b) and (c) are shifted by
one and two units, respectively. (d) Blowup of (b) showing the
hysteretic behavior. (e) The same as (d) for (c).

tice simulations becomes evident. %e calculated the
spectral function,

and found that the ACVS has resonances at frequencies v

and v/2, confirming the characteristic of the PHIS. It
was at this point that we were rather intrigued by these
results and so we decided to explicitly visualize what the
vortices were doing; we made a series of movies describ-
ing their dynamical evolution. The movies show the fol-
lowing facts: When increasing id„with id, & i, =0.584,
the current has the effect of nucleating a vortex pair, as
seen by Leath and Xia, but in this case the vortex dipole
oscillates in polarity in tune with the ac current. This
state is stable for the longest times considered. Exactly
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FIG. 2. Step width for one defect when (V) = —,
' . (a) As a

function of the size of a lattice L XL. (b) As a function of tem-
perature T (L =40). Increasing (D) and decreasing (x) the
current.
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FIG. 3. Vortex dynamics for one defect with the same pa-

rameters as in Fig. 1(b). (a) Total number of vortices JVr vs

time t for id,.=0.586. See text for definitions of tq, tAgyg, and
t ir (b) Positive . (II) and negative (Q) vorticity (=Pl&s&P;,
=+ 2') per plaquette at a time td & t & tAcvs (c) Same as.
(b) for the stationary ACVS configuration reached for
t + t Acys.

the stability of the ACVS by varying id, or i,, while in

the (V) = —, plateau and did not see significant structural
changes. The state does fall apart, though, when exiting
the plateau. In Fig. 3(a) we see that for times larger
than tA~vs, 1VT has a minimum value of about L~, while

having large oscillations above this value at times corre-
sponding to a period of twice that of the external ac
current. We have also considered the cases when two,
three, or all the lattice sites are disordered. The displace-
ment of the sites is determined by choosing a random ra-
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the same situation occurs when sitting at an integer step.
Sitting at the PHIS with (V) = —,

' and with id, ~i,+, the
size of the vortex pair increases and oscillates periodically
in time, in phase with the ac current. This happens up to
a time tq, corresponding to a critical dipole size, after
which the vortices break away from the pinning site.
After td the moving vortices rapidly start generating
other vortices, as shown in Fig. 3(a), which gives the total
number of vofttces, /VT =/V++% —, defined by
=intr~(I/2tr)gpttt)(gati~)~, as a function of time. This
vortex generation phenomenon does not appear to have
been considered before. The motion of the vortices nu-

cleated does not follow regular patterns, although in the
one-defect case, and only in this case, they present a left-
right antisymmetry, positive negative, about an axis
along the current direction and passing through the de-
fect, as shown in Fig. 3(b). The vortex nucleation contin-
ues up to another time tAcvs, shown in Fig. 3(a). It is

after this time that streets of vortices of alternating signs
form with axial symmetry tilted by an average angle
of about 27 measured clockwise with respect to the x
axis, and separated along x by a distance of about L,/2.
The sign of the vorticity along each street oscillates in

phase with the ac curl ent. This ACVS ls shown ln Flg.
3(c). We have seen the ACVS also formed at an angle
z —27, as ~ould be expected from symmetry considera-
tions. This ACVS remains stable for the longest times we
considered, which were several orders of magnitude
larger than td. We found that the angle made by the
ACVS is the same even when using free boundary condi-
tions. In the latter case, however, the minimum lattice
size needed to form the ACVS was 64x64. We studied
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dius and angle distributed uniformly in [O, e] and [0,2rr],
respectively. We find that in all cases, although the
length of the transient and the total number of ac-
current-induced vortices is different, the stationary oscil-
latory state is essentially the same ACVS. This proves
that this state is in fact very robust. To determine what
is essential in the formation of the ACVS, we removed
the defect at different delay times. When the defect is
taken out at time t & td, the vortices do not have time to
escape and they annihilate each other. However, when
the defect is removed after time t ~ td, the two vortices
are too far apart to annihilate each other and they are
capable of generating the whole ACVS by themselves.
This fact shows that the defect is only a vehicle to gen
crate the vortex pair but what is essential is to have at
least two vortices sufhcient'ly far apart to generate the
ACVS. To separate the relative importance of dc from ac
currents in the stability of the ACVS, we turned off the
ac current at a time t,tt shown in Fig. 3(a). We see that
the ACVS abruptly decays to the pinned two-vortex ini-
tial state. When the dc field was switched off, with the ac
current still on, the ACVS stayed longer but eventually
also decayed, as shown in Fig. 3(a). These results show
that both the ac and dc currents are essential to generate
and to maintain the stability of the ACVS. This is anoth-
er of the basic differences with the GSS in which the os-
cillating vortex distribution remains after id, =0. To
show that these results are not just a characteristic of the
one-defect problem, in Fig. 1(c) we show the I Vcharac--
teristic in the glass case, together with a blowup about
the (V) = —,

' PHIS shown in Fig. 1(e). We note that
there is a PHIS as well, and although the hysteretic effect
is diminished, the pseudosteps are clearly present. Final-
ly, we studied the stability of the ACVS against thermal
[Iuctuations. In Fig. 2(b) we present results for the step
width when increasing or decreasing the dc current as a
function of the normalized temperature. Here we see
that the ACVS is stable only at relatively low tempera-
tures as compared to the phase-coherence critical temper-
ature.

As can be gathered from the results discussed above,
the ACVS we have discovered in our simulations is fun-
damentally diAerent from the GSS. We suspect that the
basic diAerence is that in order to explain the GSS one

uses a minimum-energy principle, while here the same
does not appear applicable. An extensive discussion of
these and other related results will be found elsewhere
[9].
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