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Exchange Splitting of Epitaxial fcc Fe/Cu(100) versus bcc Fe/Ag(100)
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The magnetic exchange splitting of epitaxial Fe films is determined using inverse photoemission. fcc
Fe grown on Cu(l00) is found in two phases, one obtained by deposition at 300 K with a splitting of 1.2
eV, and the second with a splitting of 0.9 eV obtained after annealing above 450 K. bcc Fe on Ag(100)
exhibits a splitting of 1.8 eU, similar to that of bulk Fe. The magnetic splitting of the 31 states is shown
to be correlated linearly with the local magnetic moment, with a slope of 1 eV/pz. This relation holds
not only for ferromagnets, but also for antiferromagnets, spin glasses, and the free atoms.

PACS numbers: 75.70.Ak, 79.60.Cn

The magnetism of thin films has been an exciting and
controversial area. Magnetic properties of a few atomic
layers turn out to be very sensitive to strain, interaction
with the substrate, and temperature [1-4]. Therefore,
one hopes it might be possible to tailor the magnetic be-
havior of atomic layer films and superlattices in the fu-
ture, when their growth can be brought under complete
control. While magnetism has been the central focus of
previous work, the underlying electronic band structure
remains somewhat of a gray area. The single most im-
portant band property related to magnetisrn is the mag-
netic exchange splitting of the states near the Fermi level,
i.e., the 3d states in our case. There have been searches
for the exchange splitting in Ni [5], Co [6], and Fe
[2,4,7] films with mixed results. In particular, the ex-
istence of a splitting of the Fe 3d states for the interesting
fcc phase of Fe on Cu(100) has been controversial [2],
despite the fact that Fe has a bulk exchange splitting
larger than Co and Ni. One of the experimental prob-
lems in determining the 3d splitting is the overlap be-
tween diAerent d bands, which makes it difficult to
separate majority and minority components of the same
band. In the classical 3d ferromagnets, one has more d
bands occupied than unoccupied. Thus the problem can
be alleviated by probing unoccupied bands with inverse
photoemission, instead of occupied bands with photoemis-
sion. This has been demonstrated [8] for bulk Fe(100).
The work reported here shows that the exchange splitting
can be resolved for thin Fe films and that it depends on
the structure. Not only do fcc films exhibit a splitting
different from bcc films, they also undergo an irreversible
phase transition into a second fcc phase upon annealing.
These phases tie in we11 with magnetic phases observed
previously [1,2].

The magnetic thin-film systems chosen here, i.e., fcc
Fe/Cu(100) and bcc Fe/Ag(100), stand out as some of
the best-characterized [1-4] examples. They have a cer-
tain tutorial value, since the band structure of Fe can be
studied in the bcc and fcc phases. Only very few such ex-
ainples have been studied. The bcc Fe(100) surface is
lattice matched within 1% of the fcc Ag(100) surface
since the cubic lattice constant of Ag (4.08 A) is about a
factor of J2 times that of Fe (2.86 A). The extra face-

centered atom on the Ag(100) surface makes up for the
factor of 2 larger surface unit cell. The fcc phase of Fe in
the ferromagnetic state has its energy rninimurn at a lat-
tice constant close to that of fcc Cu (3.61 A), according
to first-principles calculations [9]. Relative to the bcc
phase the atomic volume is expanded. In general, one
would expect an increase of the magnetic moment when
diluting the Fe atoms, since one has a large moment of
4pii in the atomic liinit, due to Hund's rule. Calculations
[9], however, produce a low-spin phase (= I pg) in addi-
tion to the expected high-spin phase (=2.5pg), while
bcc Fe has a moment in between (2.2pq). A further
complication arises from the paramagnetic and antiferro-
magnetic phases of fcc Fe, which have a smaller calculat-
ed equilibrium volume, even less than bcc Fe. At the lat-
tice spacing of Cu(100) these phases are still quite com-
petitive with the ferromagnetic phase. Indeed, the variety
of seemingly conflicting magnetic data on this system can
be reconciled by assuming a metastable ferromagnetic
phase for low-temperature deposition, which converts into
an antiferromagnetic phase upon annealing to about 450
K, with a possible ferromagnetic surface layer. The
phase diagram becomes even richer for films thinner than
three layers, with the Curie temperature and spin orienta-
tion depending on the filin thickness. Here, we will con-
centrate on the simpler, bulklike properties of films more
than three layers thick.

The exchange splitting is resolved in Fig. I for bcc Fe
grown epitaxially on Ag(100) at room temperature
[deposition rate 8 A/min at a pressure in the 10 ' -Torr
range; thickness 15 A, i.e., ten bcc Fe(100) layers]. It is
similar to that of bulk Fe(100). The epitaxial film does
not order as well as the bulk, which is reflected in the
weakness of the image surface state and the lower intensi-
ty of the majority d band at the Fermi level. The same
phenomena are observed for a Fe film gro~n homoepitax-
ially on Fe(100) at room temperature (not shown). In
both cases, the LEED pattern exhibits large oscillations
of the spot width with energy, indicating many small ter-
races. While the hornoepitaxially grown Fe film can be
annealed to give a bulklike spectrum, the Fe film on
Ag(100) is affected by Ag segregation before it can order
properly.
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FIG. 3. Correlation between the magnetic exchange splitting
of the 3d states and the local magnetic moment. The two quan-
tities are roughly proportional with a slope of 1 eV/p&. The
data for ferromagnetic Fe, Co, and Ni are from Refs. [8,11],for
antiferromagnetic Cr from Ref. [16), for the spin glass Mn in

Ag from Ref. [17],and for the free atoms from Ref. [18]. The
results of this work on fcc Fe/Cu(100) fit into the picture when
combined with the data of Ref. [14] on the magnetic moment.

0
0

correlation between the splitting and the magnetic mo-
ment, with roughly 1-eV splitting per Bohr magneton pz
for large moments and somewhat less for small moments.
The data for fcc Fe/Cu(100) fit into this picture when us-

ing a previous measurement [14] of the moment. In this
work a tnoment of 1.9ptt/atom is found for three layers of
Fe deposited at 125 K, which collapses to 0 9ptt/at. om
when growing at elevated temperature (350 K). One
should keep in mind, though, that the detailed growth
conditions are different in the two experiments. It is
surprising that this simple proportionality of 1 eV/ps be-
tween exchange splitting and moment can be extended
beyond the realm of ferromagnets. As Fig. 3 shows, it
appears to be valid for antiferromagnets [15,16] (such as
Cr and Mn-doped Cr), spin glasses [17] (such as Mn in

Ag), and even for the free atoms [18]. Long-range, fer-
romagnetic ordering seems to be irrelevant for the ex-
change splitting. Only the local magnetization at a given
atomic site counts. This type of measurement is still pos-
sible in magnetically disordered systems and could be
useful to estimate the local magnetic moment from the
exchange splitting [19]. Such a situation might occur for
monolayers of magnetic materials [20].

A relation between the exchange splitting and the mo-
ment is expected in the context of itinerant ferromagnets
[12]. The ratio of the exchange splitting at the Fermi
level to the moment is known as the Stoner parameter

[see Eq. (2.14) in Ref. [12]]. It is essential in determin-
ing the magnetic properties, such as Curie temperature,
magnetization, and susceptibility, at least in a simple
Stoner model. Independent of that model one finds that
more sophisticated local-density calculations [12,13] give
a ratio of splitting to moment in the range of 0.9 and 1.0
eV/ptt for ferromagnetic 3d metals, nearly independent of
the material and close to the average slope of 1 eV/ps
found experimentally [21]. The more general, empirical
correlation in Fig. 3 poses an interesting challenge to
first-principles theory, i.e., to understand its origin and to
point out the limitations for determining local moments
from the splitting.

The author enjoyed stimulating discussions with A. R.
Williams, P. M. Marcus, and R. F. Willis.
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