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Electronic Properties of Compositionally Disordered Quantum Wires
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Electronic states in quantum wires are studied using computer simulations of the growth to character-
ize the compositional disorder and a tight-binding Hamiltonian to determine the electronic densities of
states. Calculations for monolayer slices of wires generated from the statistics of the simulated ~ires re-
veal the degrading effect of interface profile fluctuations and islands on the ideal quasi-one-dimensional
electronic characteristics. Fixed-width fluctuations of the wire profiles, on the other hand, have a rela-
tively minor effect on the first few subbands. Calculations of the localization length are used to charac-
terize the mobility within the quantum wires.

PACS numbers: 73.20.0x, 68.55.—a, 71.20.—b

The fabrication of semiconductor heterostructures by
molecular-beam epitaxy (MBE) and related growth tech-
niques has had an immediate and far-reaching impact on
fundamental investigations and practical device develop-
ment. Increasingly, attention is moving away from
quasi-two-dimensional simple quantum wells and multi-
ple quantum wells towards quasi-one-dimensional struc-
tures and networks of such structures, which may be
grown by a variety of methods.

A natural extension of standard MBE growth on nomi-
nally flat surfaces is the growth on slightly rnisoriented
(—2'-4') surfaces of structures where the quantum
confinement of carriers occurs in two dimensions, i.e.,
quantum "wires. " The rnisorientation produces a se-
quence of alternating steps and terraces, with the impor-
tant features for quantum wires being that growth occurs
by step advancement [1] and that the same relative
amount of the two materials is grown at each monolayer.
This procedure has been applied with conventional MBE
[2], migration-enhanced epitaxy (MEE) [3], and metal-
organic chemical vapor deposition (MOCVD) [4).

There is a variety of reasons for studying the electronic
properties of semiconductor quantum wires. The sugges-
tion of a high mobility due to strong suppression of elastic
scattering, by analogy with quasi-two-dimensional high-
electron-mobility transistor (HEMT) structures, has led
to the expectation that quantum wires could be used in

high-speed electronic devices [5]. Furthermore, the laser
characteristics of quantum-wire lasers have been predict-
ed to show a significant improvement on those of quan-
tum-well lasers in terms of threshold current, modulation
dynamics, and spectral properties, provided there is no
strong coupling among neighboring wires [6]. On a more
fundamental level, quantum wires provide an opportunity
to study electronic transport in ordered and disordered
quasi-one-dimensional systems with some control over the
lateral dimensions. This approach would complement
previous work on molecular and polymeric chains, on the
one hand, and metal wires and structured gate systems,
on the other.

Implicit in many of the predicted characteristics of
narrow quantum wires [6-8] is the assumption that the
compositional disorder at the interface is either unimpor-
tant or can be controlled. When fabricated lithographi-
cally, the lateral dimensions are still large enough() 1000 A) that the interface Iluctuations are relatively
unimportant, but produce only a limited separation of
subband energies, so in most cases the broadening of the
levels has been greater than the separation. Evidence for
the presence of wire structures produced by direct growth
methods has come from photoluminescence excitation
studies, which show a strong anisotropy [3] in the intensi-

ty ratio of the electron-light-hole and electron-heavy-
hole exciton peaks, depending on the orientation of the in-

cident light polarization with respect to the direction of
the quantum wires. However, the laser characteristics of
these structures are not significantly better than lasers
made from quantum wells with equivalent alloys. This is

explained as being due to coupling between the wires and
the roughness of the wire boundaries.

In this Letter, we examine the effects of compositional
disorder on the electronic densities of states and localiza-
tion lengths of simulated quantum wires. Our results
provide the first clear indication of the effects of various

types of disorder on the electronic states in quantum
wires. Although quantum wires are not usually fabricat-
ed with MBE, the breakdown of the effects of various

types of compositional disorder has implications for the
electronic behavior of quantum wires fabricated by other
techniques. Furthermore, only for conventional MBE are
the details of the growth process known with any certain-

ty, though models have been advanced for both MEE [9]
and MOCVD [10].

In the solid-on-solid model of MBE [11), the substrate
is modeled as a simple cubic lattice on which overhangs
are not permitted. Growth is initiated by the random
deposition of atoms onto the lattice at a rate JA, where J
is the flux and 8 is the substrate area. The migration of
adatoms is treated as a nearest-neighbor hopping process,
with the hopping rate given by k(E, T) =koexp( —E/
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ktt T), where ko is an adatom vibrational frequency
(= 10' s '), k8 is Boltzmann's constant, T is the sub-
strate temperature, and E is the barrier to migration.
The barrier consists of a substrate term Eq and a contri-
bution E~ from each nearest neighbor along the sub-
strate. Thus, E =Ep+nE&, where n =0, 1, . . . , 4. By
direct comparison with the experiments of Neave et al.
[1], the optimum values of these diffusion barriers for
GaAs(001) for the growth conditions of Ref. [ll have
been determined to be Eg =1.45 eV and Etv =0.3 eV [8].
This allows a direct relation to be established between the
simulated and experimental temperature scales, as de-
scribed in Ref. [8].

Following previous work [12], we shall simplify the
problem of quantum-wire growth by considering a system
in which the two components of the quantum wire have
identical kinetic properties and are differentiated solely

by a label. In this way we can focus upon the influence of
the growth kinetics in determining the electronic charac-
ter of the structures. This procedure is necessitated in

part by there being no systematic experiments of the type
reported by Neave et al. [1] from which to estimate the
kinetic parameters for Al during the growth of A1As.
Growth was simulated on a 120x80 lattice with four
steps of terrace width equal to 20.

The electronic structure of the quantum wires was cal-
culated using a tight-binding Hamiltonian, which allows
the disorder at the interface to be treated exactly [13].
For the calculations reported here, we considered a
single-band model with only nearest-neighbor interac-
tions, though neither these approximations nor the use of
a simple cubic lattice are intrinsic restrictions of the mod-
el. Our effective Schrodinger equation can be written in

terms of site components as e;c;+gj Vjc~ =Ec;, where c;
is the amplitude of the wave function at site i, and e; is
the potential, which takes either the value eg,. or eA~. The
hopping elements V;~ are the kinetic-energy terms, which
will be taken to have the constant value V between
nearest neighbors and zero otherwise. For GaAs/AlAs
wires, we must choose eA~&&e~, In the limit eA~

the Ga subband can be studied by considering only the
Ga sites. This provides a considerable saving in the com-
puter time and has little effect on the results when com-
pared with more realistic values for eA~. It must be
stressed, however, that this treatment is not intended to
represent in detail any realistic GaAs/A1As system, but
only to treat on a quantum-mechanical level a system for
which the scattering structure is similar to that of a real-
istic system.

Since we wish to compare the spectrum of the disor-
dered wire with that of a perfect wire, we must perform
the calculations with sufticient resolution to be able to
resolve the important spectral features. A perfect wire of
cross section MxM has a band of total width 12V con-
taining M subbands and 2M inverse square-root singu-
larities. Thus each feature is of order 6V/M . If fifty
energy points are needed to span each feature adequately,

then an energy step of order AE= V/8M is required.
Now if a finite system of length L is considered, then the
number of states in the spectrum is equal to the number
of sites, i.e., M x M XL, and the average number of states
in an interval AE is %=M LAE/12V =L/100. For a
reasonable representation of the density of states, approx-
imately 200 states per energy interval are needed, imply-
ing a typical system length of L —20000 sites. Since it is
impractical to carry out the growth simulations with
L —10, we must adopt an alternative strategy.

We consider, as an initial calculation, wires with a
one-dimensional cross section, which saves computer time
without sacrificing the essential physics. Furthermore,
submonolayer structures similar to those whose electronic
structure we are calculating have been grown by MBE
[14], so this idealization is not as drastic as it may first
appear. Since the calculation of the density of states and
the localization length employs an algorithm based on a
recursive method for building up the wire slice by slice, it
is desirable for our algorithm for generating the structure
to work in a similar way. To characterize the composi-
tional disorder of the simulated structures, the interface
fluctuations and the island structures found within the
wires are treated independently. Additionally, all islands
of wire material outside of the main body of the wire
were removed. These small structures cannot support
states near the band edge and so are not important. With
these approximations, the fluctuations of the two edges
can be described in terms of two components, the mean-
dering of the wire, represented by the fluctuation of the
mean position of the two edges y, and the fluctuation of
the width of the wire hy.

We anticipate, in the light of recent results on ballistic
transport in split-gate structures [15],that the long-range
variations in y and Ay will be much less important than
the short-range behavior, and that the width Iluctuations
will be more important than the snaking. Our algorithm
must therefore be designed to reproduce the short-range
variations in the wire width as accurately as possible [16].
We use the distributions for the changes in y and hy,
Prob(By) and Prob(Bhy), from which random values of
By and Bhy can easily be chosen by a Monte Carlo pro-
cedure. By concentrating on these changes, we correctly
reproduce the short-range behavior of the wire structure,
while detailed balance should guarantee a reasonable
reproduction of the absolute values of y], y2, and Ay.
The concentration of islands of Al within the simulated
wires and the distribution of their sizes were analyzed
and the generating algorithm was modified to include
such structures. The concentration of these Al sites was
estimated to be q =0.05 for wires of width 10 and

q =0.03 for width 15. There was, however, a significantly
higher fraction of larger Al islands in wires of width 15.

A comparison of generated and simulated structures is
shown in Fig 1, including the successive incorporation of
fixed-width fluctuations, or meandering [Fig. 1(a)l, «c-
tuations in the width [Fig. 1(b)], and islands [Fig. 1(c)]
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FIG. 1. Sections of the quantum wires of width 10 con-

sidered in the density-of-states and localization-length calcula-
tions: (a) fixed-width fluctuations with no islands (snaking);
(b) including width fluctuations, but no islands; (c) including
both width fluctuations and islands; (d) as in the growth simu-
lations.

in generated wires, compared with a simulated wire [Fig.
l(d)l. The mean width in all three cases is 10 atomic
units and the statistics used to generate these structures
were taken from the appropriate correlation functions of
simulated wires [Fig. 1(d)l.

The integrated density of states was calculated using a
method revived by Evangelou [171 and based on the work

by Dean and Martin [18]. The densities of states near
the band edge for the generated wires in Figs. 1(a)-1(c)
are shown in Fig. 2. The physically interesting region of
the spectrum is that close to the band edge, where the
wave functions with long wavelengths along the wire
direction should be least sensitive to perturbations of the
wire width. The effect of meandering on the density of
states is quite small and is not shown. However, the in-
clusion of width fluctuations has an evident detrimental
effect, with only the first subband having a sharp defini-
tion (Fig. 2, curve b). The addition of islands has an even
stronger degrading effect (Fig. 2, curve c), presumably by
forcing nodes in the wave function, which wipes away the

FIG. 2. The density of states of various width-10 wires (solid
lines, curves b-d) plotted alongside the ordered case (dotted
line, curve a). Curve b, fluctuating width without islands; curve
c, fixed width with islands; curve d, Auctuating width with is-
lands. Curves c and d have been shifted vertically.

remaining characteristic features of the density of states.
Note in particular that the broadening due to width fluc-
tuations seems to increase with increasing energy,
whereas the effect of islands is roughly energy indepen-
dent.

These results can be understood using simple argu-
ments. If the energy of the quantized levels in a system
of width L is F.—n /L, then the Auctuation of the ener-
gy is roughly BF.—E(BL/L), which is a strong function
of the width L. On the other hand, the coherent-potential
approximation for the islands yields a self-energy Z= —q/G, where q is the density of islands defined above
and 6 is the Green's function on a single site. This is not
very dependent on the level index and leads to an energy-
independent broadening.

As a result of the random fluctuations of the width,
there is a finite probability that the wire structures being
generated will be broken at some length. The occurrence
of such breaks will have a drastic effect on the transport
capabilities of the wires. For the electronic model used
here such a cut would result in the electrons in the total
wire having zero mobility. Using the generating algo-
rithm discussed above, the average length before such a
break is found to be [16l —20000 slices without islands
and —5000 slices with islands. For a system with a full
two-dimensional cross section the typical wire length
would be expected to be an order of magnitude greater
than this.

Whether or not the wire structures are connected over
long distances in a quantum-mechanical sense can be in-
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vestigated by calculating the transmission probability T.
Because all states are localized exponentially in any one-
dimensional disordered system [19], we can define a lo-
calization length k for a system of length L by T
=exp( —2L/A, ). This localization length, which is the
appropriate definition of the quantum-mechanical con-
nectivity of the wires, was calculated using the well-tried
transfer matrix method [20,211. Each point was generat-
ed using systems corresponding to —50000 slices, i.e.,—5% error. The results show that the disorder is suffi-
cient to localize all of the states to well within the classi-
cal length of the wire, the systems without islands having
a typical localization length of —90 lattice units and the
system with islands, of -30 lattice units. Hence, con-
trary to the predicted high mobility for idealized wires,
the simulated wires will in fact have very low mobility.

The results presented here show that the densities of
states and electron mobilities of monolayer wires grown
on vicinal surfaces by conventional MBE deviate drasti-
cally from those determined on the basis of ideal struc-
tures. This is in stark contrast to the behavior found for
quantum wells, for which sharp spectra and high mobili-
ties are now achieved routinely even for relatively narrow
wells. Nevertheless, our data contain strong indications
that if island formation is suppressed then the definition
of the first few subbands would be substantially im-

proved, which holds promise for optical applications of
quantum wires. Studies that go beyond monolayer struc-
tures will be required to assess the prospects for electronic
transport applications of quantum wires.
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