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We calculated the relative stabilities of carbon clusters with up to 60 atoms. Equilibrium geometries
have been obtained by combining an adaptive simulated annealing method and a simple tight-binding-

type Hamiltonian for total energies. We found that C clusters favor one-dimensional structures for
n &20. For n & 20, closed fullerene cages show a larger stability than both the one- and two-dimensional
structures (such as graphite flakes and buckled fuilerene "caps"). Isomers with linear and "fullerene"
structure should coexist near the critical cluster size n = 20. We find the C60 fullerene to be the most
stable structure, with a binding energy of 6.99 eV/atom.

PACS numbers: 61.50.—f, 36.40.+d, 82.30.Nr

Recent synthesis of C60 clusters in macroscopic quanti-
ties by Kratschmer et al. [1] triggered enormous scientific
and public interest in this new form of carbon. The un-

common "hollow soccer ball" (or "fullerene") structure,
which was originally postulated for this cluster by Kroto
et al. [2], promises unusual properties for this cluster.
While the amount of information on C6o is increasing
very rapidly [3], much less is known about the structure
and energetics of carbon clusters with fewer atoms [4].
Also, only unconfirmed speculations exist about the path-
way leading to the fullerene structure [5].

In this Letter, we present a consistent picture of the
different structural regimes encountered during the
growth of carbon clusters with up to 60 atoms. For each
cluster size, we attempt to determine the equilibrium
geometry and cohesive energy which is indicative of the
stability of the cluster. We have achieved this by com-
bining an adaptive simulated annealing method with a re-
cently developed semiempirical total-energy scheme.

Structure optimization in large C„clusters is a non-
trivial undertaking in view of the large number 3n —6 de-
grees of freedom. Carbon is very treacherous in this
respect since the directionality of bonding causes a high
complexity of the potential-energy surface. Consequent-
ly, total-energy minimization using standard techniques
in most cases leads to local minima rather than the op-
timum geometry. We optimized the cluster geometries
by using a modified version [6] of the adaptive simulated
annealing method [7]. Starting at a "temperature" [8]
which is much higher than the cluster melting tempera-
ture, we presearched the (3n —6)-dimensional coordinate
space for acceptable geometries. The successful at-
tempts, as defined by the Metropolis Monte Carlo pre-
scription [9], converge towards a region in the coordinate
space which is likely to contain the optimum geometry.
The search then continues at a lower temperature, con-
centrating on this region. As the temperature decreases,
the covariance matrix of the 3n —6 variables describes a
gradually decreasing portion of the coordinate space.

The binding energy of this cluster (with respect to iso-
lated atoms) is then given by

E„h =nE&,&(C atom) —E$ $(C ) . (2)

We label the electronic states of the cluster by a and
the atomic sites by i,j The firs.t term in Eq. (1) is the
one-electron energy of the cluster, obtained using a
tight-binding Hamiltonian to be described below. The
second term consists of pairwise repulsive energies E„(d)
arising from nuclear repulsion and electronic "overcount-
ing" terms. As for silicon, we choose to define E, as the
difference of the "exact" calculated ah initio [13] binding

energy and the tight-binding one-electron energy of C2,
as shown in Fig. 1. The third term represents corrections
to the binding energy during the transition to higher
(bulklike) coordination numbers Z;. The parameters in

The search is finished when the uncertainty in all atomic
coordinates is smaller than a preset value, typically 0.1 A.

Our energy function for the optimization is based on a
parametrized tight-binding Hamiltonian. For maximum
accuracy, one would prefer a first-principles scheme,
based, for example, on the local-density approximation
(LDA) [10,11]. A systematic survey of large systems (as
done here), however, requires more computer-efficient
methods at this point. Our method is several orders of
magnitude faster than a corresponding LDA calculation,
and has been tested successfully in a previous survey of
small Si„clusters [12]. The application to carbon is less
accurate. However, important quantum-mechanical ef-
fects, such as changes in hybridization with diAerent
structural configurations, are generally well accounted
for.

We write the total energy of a carbon cluster as a sum
of four terms [6],
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FIG. 1. Binding energy E,„h (solid line), repulsive energy E„
(dotted line), and band-structure energy Ess (dashed line) for a
Cq molecule, as a function of the bond length. The ab initio CI
results [13]are indicated by ~.

FIG. 2. Binding energy F.,oh of small carbon clusters as a
function of cluster size n, for n ~ 20. Results for chains (a) are
connected by a solid line, results for rings (o) are connected by
a dashed line, and results for planar graphite Hakes (*) are
connected by a dotted line.

this term are chosen to reproduce binding energies of
selected bulklike structures. The Anal fourth term is an
intra-atomic Coulomb repulsion arising from possible
charge transfers between inequivalent sites. Zero-point
vibrational energies are neglected.

This tight-binding energy formula contains the essen-
tial physics which governs bonding in carbon structures.
It is easily applicable to very large carbon clusters which
are inaccessible to ab initio techniques, at the expense of
avoiding an explicit treatment of rnulticenter integrals
which can be important in small structures. %here appl-
icable, however, it provides a more detailed insight into
rehybridization energetics than more empirical schemes
(such as the Tersoff potentials [14]), which have recently
been applied to this system [15],since it treats the kinetic
energy quantum mechanically and thus correctly repro-
duces electronic-shell-structure eAects. Furthermore, it
yields 3ahn-Teller distortions of symmetric geometries
due to partially occupied degenerate levels at the "Fermi
energy.

" %'e expect it to give a reasonably accurate in-

terpolation between the dimer and selected bulk struc-
tures.

We have used a simple two-center Slater-Koster pa-
rametrization [16] for our four-state (s,p„,p~,p, ) near-
est-neighbor tight-binding Hamiltonian [12]. The pa-
rameters have been obtained from a global fit to local-
density approximation [10] calculations for the electronic
structure of C2, a graphite monolayer, and bulk diamond
for different nearest-neighbor distances [17]. The diago-
nal elements of the Hamiltonian are s- and p-level ener-
gies E, = —7.3 eV and Ep=0.0 eV. The oA'-diagonal

matrix elements are the hopping integrals with a d dis-
tance dependence. Their values for d=1.546 A, which is
the equilibrium nearest-neighbor distance in diamond
[18],are V„=—3.63 eV, V,~ =4.20 eV, V„„=5.38 eV,
and Vp„= —2.24 eV. Similar to silicon, we use U =1 eV

for the intra-atomic Coulomb interaction as suggested by
Auger spectroscopy. In our Hamiltonian, we consider
those atoms as nearest neighbors which are closer than
the cutoA'distance d, =1.67 A. This is the average of the
nearest- and second-nearest-neighbor distances in bulk
diamond, and hence near the minimum of the radial dis-
tribution function.

Our Hamiltonian is rather simplified and does not treat
explicitly the multicenter as well as longer-range interac-
tions. To account for those, we introduce a simple bond-
counting term. We determine the bond-number function
y(Z) by fitting the value E„h=7.37 eV for the cohesive
energy [18,19] of bulk diamond (Z =4) and graphite
(Z=3) as well as the binding energy (per atom) in an
infinite linear chain [20] (Z =2) E„h=6.12 eV [21].
We have y(1) =0 eV by definition (C2 is reference with
Z =1), y(2) = —0 94 eV, y(3) = —2 69 eV, and
y(4) = —5.11 eV. With these parameters we calculate
the other bulk properties such as the lattice constant of
C(diamond), ao=3. 17 A (expt. 3.57 A) [18], and the
in-plane nearest-neighbor distance of C(graphite),
do=1.30 A (expt. 1.42 A) [19]. The degree of agree-
rnent between the calculated and the experimental values
is su%cient and remarkable in view of the fact that the
dependence of Et,t on geometry in our Hamiltonian is
based predominantly on the Cq molecule.

In order to understand the growth of large clusters, we
compared the energy of the optimum annealed structures
to regular geometries such as chains, planar rings, graph-
ite Ilakes, selected "fullerenes" (or hollow cages), as well
as "caps" (or fragments) of the most stable C6o fullerene.
Our results are summarized in Figs. 2 and 3 and reflect a
large variation of the binding energy per atom from 3.1

eV in C2 to 7.0 eV in C6p. These values are in overall
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FIG. 3. Binding energy E„h of small carbon clusters as a
function of cluster size n, for n ~ 20. Results for chains (Q) are
connected by a solid line, results for rings (O) are connected by
a dashed line, and results for planar graphite Aakes (*) are
connected by a dotted line. Results for buckled fullerene caps
with a pentagonal (x ) or a hexagonal basis (+) are connected

by a dashed line. Results for hollow fullerene cages (0) are
connected by a solid line. The full energy region is given in (a).
The critical transition region near n =20 is shown on an ex-
panded energy scale in (b).

general agreement with available ab initio results [3].
As shown in Fig. 2, the strong ppo bond is very

efl'ective in stabilizing the linear structures in small car-
bon clusters. Clearly, our parametrized energy expres-
sion in Eq. (1) cannot resolve the standing controversy
between difl'erent ab initio calculations [4], whether the
tetramer [22-25] C4 and the six- and eight-membered
clusters [23,24] C6 and Cs are cyclic or linear. In fact,
our fit to C2 biases us towards linear, open-ended struc-
tures. Only for larger clusters do we find that the
creation of one extra bond in the cyclic structure out-
weighs the energy loss due to bond bending, such as for
cluster sizes n = 10, 14, 18, . . . and n & 30. The stability
maxima at n =10+4k (k =0, 1,2, 3, . . . ) result from an
electronic effect and have been discussed previously
[23,24]. Even at these relatively small cluster sizes, how-
ever, planar and three-dimensional structures start to pre-

vail, as shown in Fig. 3.
Our results for binding energies of clusters with n ~ 20

atoms are summarized in Fig. 3. We find that planar
graphite Hakes become more stable than linear chain or
ring structures for n &26. One way to regain energy
stored in dangling bonds is to reduce the fraction of
twofold-coordinated atoms in graphite flakes. This can
be achieved by buckling the flakes, by substituting penta-
gons for hexagons. The corresponding strain energy is
very large in the small caps with only few atoms, but di-
minishes rapidly with increasing cluster size and makes
caps more favorable than planar arrangements for struc-
tures with n & 38 atoms.

A rather surprising result of our study is the relatively
high stability of closed fullerene cages with n ~ 20 atoms.
We find that the stability of these cages exceeds by far
any other comparable structures [26]. Except for the C6o
and C70 fullerenes, which we find to be only ~0.4 eV
(per atom) less stable than graphite, there is no experi-
mental evidence confirming or denying the existence of
three-dimensional structures. We concentrated our study
on the most stable fullerene cages which have been postu-
lated previously by Kroto [27]. These are polyhedra with
twelve pentagons and a varying number of hexagons, and
start at n =20 with the dodecahedron. While the n =20
and n =24 structures are comparable in energy to the
corresponding rings, the larger structures with n =28,
n =32, and n =50 atoms are significantly more stable
than the linear or planar structures. The C60 fullerene is
the first low-strain structure where all pentagons are
separated by hexagons. This is reflected in the high bind-
ing energy of 6.99 eV per atom. The next regular ful-
lerene is C70 with larger regions of connected hexagons
which are reminiscent of graphite sheets. Accordingly,
the binding energy of 7.02 eV per atom is higher than in

C6o and is approaching the graphite value [18] of 7.37 eV
per atom.

The relative stabilities of the clusters can be under-
stood using one-electron energy and hybridization argu-
ments. The linear structures result from the stable ppcx
bond which maximizes hybridization in small carbon
clusters. The large sp -type hybridization which stabi-
lizes bulk graphite is again responsible for the graphitic
structures which we found in large carbon clusters. Espe-
cially stable structures also tend to show a large gap be-
tween the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO).
We found the extraordinarily large stability of C6o
reflected in the large value E~ =2.4 eV of the gap be-
tween fivefold degenerate h„HOMO and the threefold
degenerate t~„LUMO [3]. This occurrence of "shell
structure" is a result of the quantum-mechanical nature
of the kinetic energy.

The equilibrium carbon-carbon nearest-neighbor dis-
tances dg g in all C„clusters lie in the range between 1.2
and 1.42 A, which is the value for bulk graphite. They
follow the general scheme that fewer nearest neighbors
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shorten the bond length, while a decreasing nearest-
neighbor overlap (e.g. , due to changing angles between
bonds) tends to increase the bond lengths. In planar
graphite flakes, in the above discussed favorable fullerene
cages, and in caps of the C60 fullerene structure, the bond
lengths approach the graphite value of dg g. Twofold-
coordinated atoms at the boundary of caps or flakes show
a bond-length contraction which aAects the average bond
length in the c1uster only in case of small clusters. Our
Hamiltonian also predicts the length diff'erence of 0.03 A
between "single" and "double" bonds in the C6o fullerene
[31.

Results presented in this study narrow down the possi-
bilities for the growth mechanism of carbon clusters.
Based on our T =0 results, we postulate initial growth as
one-dimensional structures (chains or rings) for n 520
atoms. We find that in the intermediate regime for
20+ n 560 or larger, closed fullerene cages show a larger
stability than both the one-dimensional and two-dimen-
sional structures (such as graphite flakes and buckled ful-
lerene caps). For large systems, of course, diamond and
layered graphite structures will prevail. The crossover
from "huge" fullerenes to these structures has not been
studied.

Unfortunately, our T=O results oAer little help in un-
derstanding the pathway in which the C60 fullerene is
formed. The idea [5] that caps would accrete carbon and
grow into the C60 fullerene seems unrealistic since these
structures should convert spontaneously into the more
stable closed fullerene cages. We can think of specific ac-
cretion channels being singled out by entropy under
T &0 conditions. Another possibility for the generation
of the C60 structure is a fusion of two smaller fullerites,
such as C24 and C36, which is highly exothermic. Obvi-
ously, further study of the smaller carbon clusters, espe-
cially at nonzero temperature, is needed to answer these
questions.
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