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Superfluid-Insulator Transition in Disordered Boson Systems
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We present results of path-integral Monte Carlo simulations of bosons on a two-dimensional square
lattice in a random potential of average strength V and with on-site repulsion U. We find that the
superAuid density p,, is enhanced by increasing V and U in certain regions of parameter space. By com-
bining the results of p, with the behavior of the density-density correlation function on lattices of size up
to 10x10, we study the superAuid-to-Mott-insulator transition and the transition from a superAuid to a
disorder-localized ("Bose-glass" ) phase.
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The localization problem for quantum systems has at-
tracted a lot of attention over the years. There exists
a scaling theory [1] for the metal-insulator transition
of noninteracting electrons. However, experiments on
doped semiconductors point toward the importance of in-
cluding electron-electron interactions in addition to the
random potential. While some progress has been made in

understanding the behavior of the charge and spin de-
grees of freedom, this problem remains unsolved [2].

In this paper we study the localization problem for bo-
sons. We present results of numerical simulations of
strongly interacting bosons in a 2D random potential.
This situation is realized experimentally in He adsorbed
in porous media [3] and may be used to understand the
superconducting-insulating transition in granular [4] and
homogeneously disordered films [5], at least near the crit-
ical point, and also possibly in short-coherence-length
(e.g. , high-T, ) superconductors [6].

We consider the following Hamiltonian:

H = ——,
' t g (a; aI+ H.c.) +g V;n;+ 2 Ugn; (n; —1),

&i j) i i

where a; (a; ) is a boson annihilation (creation) operator
at a site i on a 2D square lattice, n; =a; a;, t is the
strength of the hopping between nearest neighbors, V; is a
uniformly distributed random variable at i in [—V, V],
and U is an on-site repulsive interaction between bosons.

Some universal features of this model have been stud-
ied previously using scaling techniques by Ma, Halperin,
and Lee [7] and Fisher et al. [8], and by the renor-

malization-group method in 1D by Giamarchi and Schulz
[9]. However, there are several questions regarding the
nature of the phases and their characterization that re-
main open.

In this Letter, we report results for the disordered-
boson Hamiltonian obtained by path-integral Monte Car-
lo (PIMC) techniques. In particular, we determine the
superfluid density p, and the spectrum of density excita-
tions. We find indications of three phases: a superfluid
phase (with p, & 0 and gapless excitations), a disorder-
localized phase, often called the "Bose-glass" phase (with

p, =0 and gapless), and at a commensurate density p =1,
a Mott phase (with p, =0 and a finite gap). We also find
unusual effects from the interplay between disorder V and
interaction U. (i) In the disordered system, p, is en-
hanced by increasing U, peaks for U= V, and then de-
creases. (ii) At an incommensurate density, for V & V„a
critical amount of disorder, the system remains superfluid
at large U; however, for V & V„ it undergoes a transition
to a disorder-localized phase at U=U, (V), which de-
creases with disorder. (iii) At a commensurate density

p =1, we find strong support for a direct superfluid-to-
Mott-insulator transition, without an intervening disor-
der-localized phase. The transition takes place at a criti-
cal value of U =U„(V) which increases with the disorder
V.

Before we discuss these results in more detail, we
present a brief description of the PIMC algorithm [10].
Our aim is to calculate the diagonal density matrix in

the canonical ensemble p(R, R;P) =(Rtexp( —PH)tR),

t

where p=l/kttT. Upon inserting complete sets of states
we obtain the path-integral expression,

p(R, R;P) = gJ dR( dRM ( p(R, R(, r)p(R), Rz, r) p(RM ),P(R);z),
W'I p

(2)

with r =p/M. In Eq. (2), R represents the enseinble of IV particle coordinates on the mth (imaginary) time slice,
R =(r~,rz, . . . , rtv ), where r~ =(xt,yj) is the position of the jth particle in a periodic box of size L &&L. The den-

sity matrix for the Bose system is obtained by summing over permutations I' of the particle coordinates.
The PIMC algorithm uses a high-temperature expansion for the density matrices p(R;, R;+&', r ) and computes the sum

over internal coordinates and permutations in Eq. (2) with a generalized Metropolis algorithm. The energy as well as
quantities diagonal in the coordinates are then calculated as averages over the paths. The superfluid density is
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determined from both the winding number [10,11] and
the current autocorrelation function [12-14].

%e have checked our PIMC results against exact diag-
onalization of small systems in 10 and performed exten-
sive tests to verify that our results converge in the limits

0 and P~ ee. We have verified that for small sys-
tems the quantities of interest (e.g. , p, and the energies)
seem to be self-averaging. In the superAuid and Mott
phases they show small sample-to-sample variations, as
seen by averaging over =20 samples. In the disorder-
localized phase, as discussed later, we find strong depen-
dence on the choice of initial conditions [15].

In our simulations, the insulating phases are generally
indicated by the vanishing of p, . In order to further
characterize the insulating phases we calculate the spec-
trum of low-lying density excitations in the Feynman-Bijl
approximation, i.e., under the assumption that there is

only one low-lying mode accessible to the system at each
wavelength. Consider the trial state created by the densi-

ty operator p« =Pjexp(ikr/) and orthogonal to the nor-
malized ground state I%'o&:

I +«& =p« I +o& &+ol p« I +o& I +o& (3)

The variational energy of this trial state is given by a gen-
eralization of the lattice f-sum rule [16] to disordered
systems by

to« =&« —&o =e« IIt I/&(k) ~ &s.t,
where e« is the single-particle (band) energy, It is the to-
tal kinetic energy, and S(k) =(I/IV)[&p«p —«) —l(p«&l ]
is the structure factor. The insulating phases are dis-
tinguished by the long-wavelength behavior of the struc-
ture factor as discussed below.

The Hamiltonian in Eq. (1) simplifies in several limits.
For noninteracting bosons (U=0) the particles condense
at. zero temperature into the lowest one-particle eigen-
state, which, for an infinite lattice at nonzero V, is local-
ized. Therefore, p, vanishes for any choice of the disor-
der. For a periodic 10X10 lattice we have calculated p,
from the shift in the energy of the lowest eigenvalue with
a change of the boundary conditions [12] and find it to be
p, /p-2X10 &(I at V/t =4. This also indicates that
the system size is much larger than the localization
length of the noninteracting system. Another limit amen-
able to analysis is the classical state (t =0 with U and V
finite). At a commensurate density for U & 2V the classi-
cal solution is a Mott insulator, with the density at each
site (n;) =p (an integer) and a gap to excitations AE
=U —2V. It can be easily seen that the gap decreases
with disorder. At other densities the classical ground
state can also be computed and is seen to be gapless. Fi-
nally, for interacting bosons in zero disorder (V=0) our
numerical simulations [11] have determined the transi-
tion between the superAuid state and the Mott insulator
to be U/t —8.5 in the commensurate case (p=l), and
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FIG. 1. Superlluid density p„/p vs interaction strength U/t in

a 6X6 system of density p=0.75 and /jt =4. The values of the
disorder parameter are V/t =0 (circles), 2 (squares), and 6 (tri-
angles).

found no transition for incommensurate densities. Simi-
lar properties were found in 1D [13].

Incommensurate density of bosons p=0. 75.—The be-
havior of p, as a function of U is shown in Fig. 1. In the
clean system, p, /p is unity for U =0 and decreases mono-
tonically with increasing U, finally saturating at a finite
value. For a Anite V, in the noninteracting limit p, van-
ishes for the infinite system, and is close to zero on our
finite system. %e can see clearly that an increase in U
leads to an enhancement of p, for small U, as the interac-
tion term prohibits an extensive number of bosons from
occupying the one-particle localized ground state. There-
fore, the interaction term screens the randomness and
effectively delocalizes the system. p, peaks when U= V
and then decreases for larger U. p, in the disordered sys-
tem, even though nonmonotonic as a function of U, is al-
ways less than that in the clean system, as might be ex-
pected. It appears from Fig. 1 that for small disorder
V& V, the system remains superAuid at large values of
U. We believe this behavior should persist at arbitrarily
large U; however, further calculations are needed to pin
down the behavior of p, in this region. This is different
from the scenario presented in Ref. [8], where a Bose-
glass phase appeared for any disorder in the hard-core
limit.

We next calculate the density-density correlation func-
tion and find that in the superAuid phase S(k) -k. Since
e« —k, this confirms, from Eq. (4), the existence of pho-
non modes with a dispersion ttr« =ck, where the sound ve-

locity c decreases with disorder.
The incommensurate case is of particular interest for

large values of the disorder for which the insulating
disorder-localized (the so-called Bose-glass) phase is ex-
pected to exist. To probe this state, it may seem natural
to do simulations at large values of the disorder and
determine the excitation spectrum. However, this is not
feasible, at least with our present algorithm. At large
disorder, our simulations get trapped in a local minimum,
which depends on the initial conditions. We are thus un-
able to effectively move the system through configuration
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FIG. 2. Superfluid density p, /p as a function of U/t at a con-
stant ratio of V/U= 1 (circles) in a 10& lO system of density
p=0.75 and Pt =4. Also shown is the overlap function of the
density with the classical density 0 vs U/t for simulations start-
ing in the classical state (squares) and in a random state (trian-
gles).

space. However, we are able to demonstrate convergence
of our simulations in the superAuid phase, even for small
values of p, (at large V). This allows us to approach the
transition from the superAuid side. To quantify the no-
tion of a local minimum, we define an overlap function 0
of the density with the classical density n;" at site i given

by O=g;bn;bn /[g;(bn;) g~(iinj") ] '/, where hn; =n;
—p. 0= 1 if the density at each site coincides with the
classical density. We show the behavior of 0 and p, in

Fig. 2 for a system with p=0.75 and U= V as a function
of U/t for two diA'erent initial conditions, one of them the
classical ground state. In the superfluid phase, both
simulations converge to a unique state, independent of the
starting configuration. The linear behavior of p, /p as a
function of U/t is consistent with scaling theory [81. By
extrapolating to p, =0 we obtain the approximate loca-
tion of the phase transition to be U, /t —10. Near the
transition the density in the ground state is extremely
close to that in the classical state since 0-1. This sug-
gests a description of the superfluid state near the transi-
tion obtained by including quantum phase fluctuations
around the classical solution.

Commensurate density of bosons p=l.—There are
important diA'erences from the incommensurate case,
pointing to some unusual eAects at commensuration as
seen from the behavior of p, as a function of U in Fig. 3.
In particular, we find that in the range 6(U/t (8.5, p,
in the disordered system V/t =4 is higher than in the
clean system. By studying the behavior of the structure
factor, we find that disorder enhances the density Auctua-
tions at large interaction at a commensurate density. For
8.5(U/t(11, the disordered system continues to be
superAuid, while the clean system is already in a Mott
phase.

Beyond U/t) 11, the disordered system also enters a
Mott phase as indicated by the following: (a) The aver-
age single-particle density at each point in the lattice is
closely pinned to 1. (b) The correlation of the density
with the underlying random disorder &n; V~) is vanishingly
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FIG. 3. Superfluid density p,,/p vs interaction strength U/t in

a 10x lO system of density p=l and Pt =4. The values of the
disorder parameter are V/t =0 (triangles) and 2 (squares).
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FIG. 4. Energy of density excitations along [O, l] at p=l.O.

For U/t =6 (lower triangles) and U/t =14 (upper triangles) in
the disordered system V/t =4. For the clean system with
U/t =6 (lower squares) and U/t = l4 (upper squares).

small. (c) The structure factor S(k) —k, and from Eq.
(4) this implies that a Mott gap opens up in the excita-
tion spectrum as shown in Fig. 4. At U/t =14, for exam-
ple, both the disordered system with V/t =4 and the clean
one with V=O show the opening of a Mott gap that is
smaller in the disordered case. For comparison at
U/t =6, on the other hand, the spectrum is gapless in
both cases and p, is finite. Extensive simulations [14]
seem to give no indication of a disorder-localized phase
sandwiched between the superfluid and the Mott insula-
tor as conjectured by Fisher et al. [8]. The Bose glass
would unmistakably show up as a phase in which p, =0,
(n;V;)e0, and with no gap. This has not been observed.
Our numerical evidence favor instead a direct transition
from the superAuid into the insulator at a critical value of
the interaction which increases with the disorder. Our
results in the superfluid and Mott phases do not depend
on the choice of the initial conditions. Quite spectacular-
ly, in the Mott phase, even close to the onset of
superfluidity, a random initial condition evolves into a
state with a completely uniform density.

In conclusion, we have performed the first simulations
of interacting bosons in a disordered medium in two di-
mensions. Our simulations support the existence of (at
least) three phases: a superfluid phase, a disorder-local-
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ized (Bose-glass) phase, and a Mott insulating phase for
commensurate densities. At a commensurate density, the
system seems to undergo a direct transition from the
superAuid phase to a Mott insulating phase without an in-
tervening disorder-localized phase. This occurs at an in-
teraction strength U =U, for any disorder V, where U, is
found to I'ncrease with increasing V.

In future numerical work on this problem, we are plan-
ning to modify our algorithm, by including global moves
of clusters of particles, in order to allow simulations
directly in the disorder-localized phase. One promising
avenue for further analytical and numerical work on the
superAuid to Bose-glass transition is to exploit the strong
correlation of the quantum-mechanical ground state near
the transition with the classical state, a feature which
emerges from our simulations.
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Note added. —After this work was submitted we be-
came aware of a similar study in 10 by Scalettar, Ba-
trouni, and Zimanyi [17].
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