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Single Transverse Spin Asymmetries
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Using generalized factorization theorems, we calculate the leading single transverse spin asymmetry
for high-transverse-momentum direct-photon production in pp collisions, in terms of partonic matrix ele-
ments. The leading contribution comes from a "twist-3" parton distribution, involving the correlation
between quark fields and the gluonic field strength. With simple assumptions for this matrix element,
the asymmetry increases with XF, naturally giving eAects of 10% or more at large xF.

PACS numbers: 13.88.+e, 12.38.Bx, 12.38.Qk

Nucleon cross sections show important spin depen-
dence. The measurement of longitudinal polarization
dependence in deeply inelastic scattering (DIS) [1] has
given rise to renewed interest in both longitudinal and
transverse spin [2]. In fact, the dependence of hadronic
cross sections on transverse polarizations has a long histo-
ry [3,4], and important effects are seen in "single-spin"
experiments, in which only one particle in the initial state
is polarized, or in which only the polarization of a single
final-state particle is observed. In this Letter we describe
how recently developed methods in perturbative factori-
zation at higher twist [5,6] may be used to describe single
transverse spin asymmetries, and we discuss as an exam-
ple high-xF direct-photon cross sections at large trans-
verse momentum lT,

(2)

p" n"—ds/2 with n" =8„+ and p'" n"—Js/2 with n"
The same methods can be used to evaluate single

transverse spin asymmetries in pion or jet production in

the collision of these hadrons, and in Drell-Yan cross sec-
tions, where the azimuthal angular distribution of a lep-
ton is observed. The direct-photon process is attractive
for study because of its relative simplicity at lowest order
in the strong coupling, and because our calculations pro-
vide predictions that we believe are experimentally acces-
sible.

Christ and Lee [7] pointed out many years ago that
time-reversal invariance forbids single transverse spin
asymmetry in DIS to lowest order in aFM. In hadron-
hadron scattering, however, the presence of initial-state
interactions allows single transverse spin asymmetries for
final-state photons as well as hadrons.

N(p, sT)+N'(p') y(l)+X. Our results show a potentially healthy asymmetry in

the direct-photon process at moderate transverse momen-

N(p, sT) and N'(p') represent a transversely polarized ta, whose observation would provide new information on

nucleon of momentum p and spin sT, and an unpolarized nucleon structure through the expectation value of a non-

nucleon of momentum p'. In the following, we shall take local operator that combines the quark fields with a single
gluonic field strength,

EXP
fO

T(x,sT) = e" ' (p, sT~i7I(0)y+ dye e ~ psTn'n F~+(yq )Vt(yt )~p, sT).
4z

Here and below we take sT = —1. This matrix element describes the color singlet coupling of the quark density at frac-
tional momentum x to an averaged color field strength and the spin. [We have suppressed ordered exponentials of n A,
which connect the fields along the light cone, and inake T(x,sT) gauge invariant. ] The operators in T(x,sT) may be
compared to the spin-orbit coupling of an electron in a central field, although here, of course, the spin is not necessarily
associated directly with the quark. We note that Ryskin [8] has described a model in which single-spin asymmetries are
related to color spin-field strength couplings.

That perturbative QCD can be used to study the effects of transverse spin was realized some time ago by Kane,
Pumplin, and Repko [9], and Efremov and Teryaev [10]. The relatively large size of experimentally observed effects
remained, however, a difficulty [4,10]. By employing factorization methods, we show that the matrix element of Eq. (2)
contributes at first order in the strong coupling, g(pT). This is to be compared with order a, (pT) for the operator [10],

T„,(x,sT) =(p ) e'"" r (p, sT(ilr(0)y y5ysTiit(yi )~p, sT), (3)

(4)

with which T(x,sT) mixes. In fact, a possible role for matrix elements involving the field strength was suggested by
Efremov and Teryaev in Ref. [10]. Subsequently [11], these authors discussed single-spin asymmetries in inclusive
Compton scattering, y+N y+L, from a point of view very much like ours, using higher-twist techniques developed
for DIS [12] in light-cone gauge. They identified the role of operators with a single covariant derivative D~ =i8~ gAe, —
such as

Tq(x, sT) =p dy~ dy2 e ' ' (p, ( is(T0)it@+ pesTn'n D (yz )ilr(y~ )(p, sT).

1991 The American Physical Society



VOLUME 67, NUMBER 17 PH YSICAL REVIEW LETTERS 21 OCTOBER 1991

(5)

There is a close relation between T(x,sT) [Eq. (2)] and

T~(x,sT) [Eq. (4)]. Both are off-diagonal contributions
to a forward matrix element. T(x,sT) measures the over-
lap between states that differ by a single gluon with zero
momentum fraction. In Tq(x, sT), on the other hand, the
overlap is between states that differ by the transfer of the
entire longitudinal momentum of a quark to a gluon, with
the emission of a single soft quark. In perturbation
theory, however, soft gluons are emitted much more
readily than soft quarks. It is therefore natural to expect
the new matrix element, T(x,sT), to be larger than
Tq(x, sT), and we shall concentrate on the former in what
follows.

It is important to emphasize that in any cross section
described by a factorization formula, the overall normali-
zation remains unknown until the relevant parton distri-
bution (leading or higher twist) is measured. Given our
comments above, the observation of an asymmetry in our
direct-photon cross section would be essentially a mea-
surement of the matrix element of Eq. (2). In future
work, we hope to present an analysis of asymmetries in

production cross sections for hadrons as well. Depending
on the factorization formulas found in that case, it may
be possible to relate the normalizations of the various
cross sections. As we shall see, a modest size for the ma-
trix element in Eq. (2) is sufficient to produce a sizable
asymmetry in the transverse-momentum distribution of
direct photons.

Physical observables that depend on the transverse po-
larization of a single hadron are typically power correc-
tions, in comparison with the leading contributions en-
countered in spin-averaged or longitudinally polarized
cross sections. (Leading contributions in the scattering of
t~o transversely polarized hadrons have been discussed in
Ref. [13].) For example, the transverse spin asymmetry
in deeply inelastic scattering provides a measurement of
the combination of structure functions g~(x)+g2(x),
which is related to matrix elements of twist-3 operators.
The factorization of power corrections, which gives this
result, follows directly from the operator-product expan-
sion in DIS, but its extension to hadron-hadron scattering
requires additional arguments. In Ref. [14], we extended
the factorization program to O(1/Q ) corrections for un-
polarized hadron-hadron cross sections, and in [6,15] to
O(1/Q) corrections in polarized cross sections, just far
enough to include the corresponding dependence on trans-
verse spin. The general factorization formula for cross
sections of polarized hadronic scatterings is of the form

o(Q) =H 8f2fr+ —H'f2f3+01 1

—u)/s, with s = (p+p') ', r = (p —l ) ', and u =(p' l —) '.
In this kinematic region, we expect "Compton" processes
to dominate, initiated in the hard-scattering functions of
Eq. (5) by a valence quark from the polarized nucleon
N(p, sT) in Eq. (1), and a gluon from the unpolarized nu-
cleon N'(p') [16]. In this case, the relevant twist-3 ma-
trix element of Eq. (2) arises from gluonic corrections in

the polarized nucleon.
To define the asymmetry in the cross section, we denote

by o(sT, l) the direct-photon-production cross sections for
the scattering of Eq. (1). The transverse asymmetry in
the cross section for the polarized process is then

(6)

A typical Feynman diagram that gives a leading contri-
bution in the strong coupling to h, o.& is shown in Fig. 1.
We work in Feynman gauge, where diagrams with more
gluons also contribute at the same power of Q, but only
through unphysical polarizations. These higher-order
corrections produce gauge-invariant matrix elements, but
do not affect the short-distance hard parts [6]. It is our
purpose to exhibit the leading short-distance hard parts in
the following, and we therefore need only the diagrams
with one gluon from the polarized nucleon. The single
gluon here is essential for obtaining a nonvanishing asym-
metry ho& at tree level [11].

The factorization procedure described in Ref. [6] in-
cludes: (i) a "collinear expansion" in terms of the parton
momenta entering the hard scattering and of the polar-
izations of gluon fields that link the hard scattering to the
incoming hadron, (ii) the separation of spinor and
Lorentz indices between the hard part and the resulting
long-distance matrix elements, and (iii) the calculation of
the partonic hard part. In Feynman gauge it is relatively
easy to identify contributions to matrix elements involv-
ing the field strength F~+ from the expansion of the hard
scattering in the momentum k~ of the gauge-field com-
ponent n. A. T(x,sT) [Eq. (2)] comes from this expan-
sion, after a contour integral in the component n k,
which fiows from the polarized hadron through the hard
scattering.

By applying the above procedure, and using invariance
under parity and time reversal, we find that the leading
nonvanishing contribution to the asymmetry defined in

H and H ' are perturbatively calculable coeScient func-
tions, and the f„'s, with n =2, 3, are twist-n matrix ele-
ments.

As mentioned above, for direct-photon production we
shall consider for simplicity the range of large xF =(r

I jIG. l. Sample diagram contributing to single transverse
spin asymmetry in direct-photon production.
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Eq. (6) is
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=aEMa, , G(x') —b(s+i+u)ep .((s~Tl n nd'l 4 x ~s

x ~ T(x,sT&H((x, x', l)+ T(x,sT) —x T(x,sT) Hp(x, x', l) ~ .
x

(7)

Here G(x') is the usual gluon distribution, and T is the twist-3 matrix element given in Eq. (2), where a sum over quark
favor gfef is implicitly included, with ef the fractional electric charge of quarks of Aavor f. The "hard-scattering"
functions H are given by

1 N
H, ' (x,x', l) =

2N N' —
1

2g (Sa)

1 N
Hp (x,x', l)=, 2g

2N N2 —
1

S (Sb)

where g is the strong-coupling constant, and the carets refer to partonic invariants, s=(xp+x'p') =xx's, t =(xp
—l) =xt, and u =(x'p' —l) =x'u. We have exhibited explicitly the dependence on the number of colors, N. In this
form, we see that the asymmetry is proportional to the transverse momentum of the observed photon, relative to the
beam direction. Note that the H are proportional to g, rather than a, . Because it is part of H', the scale of the strong
coupling is set by lT.

The significance of the asymmetry in Eq. (7) is measured by its ratio to the unpolarized cross section, given at leading
power by

d(x ' dxF( =QEMQ, , G(x )
d I

dx 1 . - . F~(x&B(s+t+ u) ci(x,x', l)+p p',
x s x

I

(9)

xu, , (x) = x"(1—x) ',2

xd, , (x) = x"( -x)",1

a(i.s,4)xS(x) =8 2
( )

(T(x,x', l ) =2 1

2N
S +—t

(lo)

a(i.s,4.s)
a(o.s,4.s)

From the ratio of Eqs. (7) and (9), we may compute the
fractional asymmetry as a function of lT and xF,

where again, we keep only the Compton subprocess. In
Eq. (9), F2(x) =gfef xqf(x) with quark distributions parton distributions, without scaling violation, as
(lf (x ), and the hard-scattering function cr at lowest order
1S (14a)

(14b)

dho~ d(T
A (sT,xF, lT) =F(

3 E(dl d l
(»)

xG(x) =3(1 —x)',
(14c)

(14d)

T(x,sT) = 0.2Fp(x)/x (GeV), (12)

with F2(x) the usual deeply inelastic scattering structure
function, calculated according to parton-model quark dis-
tributions, which we will give in a moment. In the second
guess, we simply multiply Eq. (12) by x, to produce a
function that is suppressed at small x, in a manner remin-
iscent of the spin distribution g~ (x),

T(x,sr) =0.2F2(x) (GeV) . (13)

For simplicity, we parametrize conventionally normalized

To estimate the asymmetry, we model the "twist-3" ma-
trix element, T(x,sT), as a mass scale times a dimension-
less function of x. %e choose the mass scale to be 0.2
GeV (=AQco) while for the function we compare two
guesses. The first is

where 8 is the beta function The re. sulting ratios 2 [Eq.
(11)],for sT perpendicular to lT, are plotted in Fig. 2 as a
function of xF at Js =30 GeV and lT=4 GeV. The
lower (solid) line results from using Eq. (13) for the dis-
tribution T(x,sT), and the upper (dashed) line from us-

ing Eq. (12). In both cases, A rises to over 20% as xF ap-
proaches 0.8. The origin of this eA'ect is easy to under-
stand. In the large-xF region, the typical value of x in

Eq. (7) is large, and the term with x(8/Bx)T(x, sr) dom-
inates and increases with xF, relative to the unpolarized
cross section. This is because the derivative of any func-
tion which behaves as (1 —x)', a & 0, vanishes less rapid-
ly than the function itself as x 1. Such derivative
terms have been found before at twist-4 [S,12], but in the
asymmetry they occur at twist-3 only times the matrix
element T(x,sT), Eq. (2). This further justifies our con-
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FIG. 2. Single transverse spin asymmetry A in pp direct-
photon production as a function of xF, at Js =30 GeV, lT 4
GeV. The solid line is computed using the matrix element in

Eq. (13), the dashed line using the one in Eq. (12).

centration on T(x,sT) in the large-xF region.
%e emphasize that the asymmetry shown in Fig. 2 is

dependent on our model of the twist-3 matrix element.
For instance, although the asymmetry is positive for the
specific choices for T(x,sT) in Eqs. (12) and (13), its ac-
tual sign is not fixed by our considerations. In addition,
we anticipate substantial higher-order corrections, as
have already been observed at leading power [17]. Such
corrections typically factor from the underlying hard
scattering [18],and we expect them to cancel, at least ap-
proximately, in the ratio 2, Eq. (11). This question, of
course, bears more study. Nevertheless, it is clear that a
modest size for the matrix element is sufficient to produce
a very significant asymmetry in the large-xF region for
photons, comparable to those found for pion production
[4]. As mentioned above, an experimental measurement
of nonzero asymmetry over a range in xF could be used to
determine T(x,sT). This would supply qualitatively new
information about partonic correlations in the nucleon.
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