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It is shown that the unitarized P-wave Nambu-Goldstone scattering amplitude, constructed from the
one-loop chiral perturbation theory by the K-matrix method, does not have a resonant behavior, but has
instead one nearby pair of complex-conjugate poles on the physical sheet and should be rejected. This
result is in contrast with other unitarization schemes such as the Pade, the inverse amplitude, and the
iv/D methods, which produce a P wave re-sonance and have the correct analytic property.
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It is the consensus of many experts working on the
strongly interacting Higgs sector that the physical conse-
quences of the unitarized scattering amplitudes of the
Nambu-Goldstone (NG) bosons constructed from one-
loop chiral perturbation theory (CPTh) are not unique
and therefore unreliable. This feeling is reAected in many
recent calculations on the scattering of the longitudinal
component of the 8'and Z bosons for a strongly interact-
ing Higgs boson, where the question of unitarity is ig-
nored. A frequently cited example is the case of the uni-
tarized P-wave WI Wq scattering amplitude that is con-
structed from one-loop CPTh. On the one hand, if one
used the Pade method, with a correct sign for the O(p )
term as given by, for example, the derivative expansion of
the CA'ective action of the underlying theory, a P-wave
resonance in WI Wq scattering could be generated; on the
other hand, if one used the K matrix, whatever was the
sign of the O(p ) term, a P-wave resonance could not be
generated. Because the existence of a low-energy P-wave
resonance, which should be a clear signal at the CERN
Large Hadron Collider (LHC) and the Superconducting

Super Collider (SSC), could help to distinguish an ele-
mentary from a composite heavy Higgs boson, and be-
cause huge expenses and efforts are involved in the con-
struction of the LHC and SSC to study the Higgs sector
of the standard model, the controversy on the validity of
the unitarization scheme should not be settled by con-
sensus, but only by the basic principles of physics.

The purpose of this Letter is to give a critical examina-
tion of the known unitarization schemes. The basic prin-
ciples are the analyticity (or causality) and unitarity.
The following unitarization methods are studied: the
Pade, inverse amplitude, 1V/D, and K-matrix methods.
The main conclusion is that unlike other methods, the K
matrix, as it is usually used, could violate the Hilbert
transform (dispersion relation) and should be modified or
discarded. The K-matrix unitarized P-wave amplitude
has a pair of complex-conjugate poles on the physical
sheet with large residues, near the physical region, and
therefore should be rejected.

Let us review the P-wave f~(s) one-loop chiral pertur-
bation calculation which was first given by Lehmann [1]
in 1972 and later by others [2]:

f)(s) =(s/96+V')(I+(s/u') j —,
' E~(v) —Gg(v)+(4x) '[—

—,', +i+8(s)/6]]),

where v is equal to 93 MeV in QCD, and 246 GeV in

WW scattering. The dimensional-regularization-scheme
version is presented here; ER(v) and GR(v) are the re-
normalized O(p ) parameters which depend on the scale
v. The coinbination 4 Eg(v) —Gp(v) is, however, in-

dependent of the scale v and can be considered as a pa-
rameter in the calculation. (It is equal to 1V,/24m in

QCD quark loop calculations, where /V, is the color num-
ber. ) This expression is valid in the chiral limit of the
massless NG bosons. From the basic principle of field
theory and causality [3], one can show that the partial-
wave amplitude is a real analytic function in the cut s
plane, with the right-hand cut (or the unitarity cut) on
the real s axis from 4m to ~, and the left-hand cut on
the real axis from 0 to —, where m„ is the NG boson
mass, and that there are no complex singularities such as
poles or cuts, or poles on thc negative real s axis. In thc
chiral limit m =0, the two branch points at 4m and at 0
coincide with each other which makes the study of the
analytical property of the partial-wave amplitude difti-

cult. In order to study its analytical property, it is neces-
sary to give a small mass to the NG bosons to separate
the two cuts. It will then be possible to continue the par-
tial wave throughout the complex s plane to study its ana-
lytic property, as will be shown below.

f~(s) as given by Eq. (1) satisfies only perturbative
unitarity instead of the full elastic unitarity condition,
Imf ~ (s) = ~f ~ (s) ~, and is therefore inadequate for strong
interaction physics. The perturbation series for f~(s) has
to be resummed in order to satisfy exactly the elastic uni-

tarity condition. It would be ideal if the reconstructed
amplitude were free from the complex singularities or
poles on the real negative axis. This is usually not possi-
ble. A well-known example is the Landau ghost which
appears in the photon propagator when the geometric
series for the self-energy operator is summed.

Because the unitarized partial-wave amplitudes dis-
cussed below are similar to the geometric series of the
self-energy operators, unwanted singularities, which de-
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stroy causality, are expected to appear in the resummed
series. Because the coupling constants become large in
the soft hadronic physics and also in the strongly interact-
ing Higgs sector, these unwanted poles move dangerously
close to the physical region. Since the existence of
unwanted poles in a unitarized amplitude can always be
removed by multiplying it by an appropriate polynomial,
at the expense of violating the unitarity relation, the main
issue here is the acceptable degree of violation of unitari-
ty at the energy scale under consideration. More precise-
ly, if an 1th partial-wave amplitude f&(s) had an unwant-
ed pole at —ss, the pole-free amplitude fl (s) can be
constructed, fi (s) =f (ts)( sos)/ ss. At values of s ((ss
the modified amplitude is approximately the same as the
ft(s). The question is therefore with what accuracy one
is able to calculate strong interaction physics. It is an il-
lusion to suppose that soft hadronic physics can be calcu-

lated with an accuracy better than 10% or 20%. There-
fore one should only demand that sg be 5 or 10 times
larger than the energy scale s where the calculation is
made. (An exception to this rule is the harmless nearby
poles which have very small residues and hence can be
subtracted out without greatly affecting the unitarity re-
lation and the low-energy theorem. ) For a given set of
unitarized amplitudes constructed from the one-loop per-
turbative calculation, one should choose only those which
have unwanted singularities that are far away.

To study the analytic property of the P wav-e ampli-
tude, it is necessary to separate the right- and the left-
hand cuts; these are not apparent in Eq. (I). This is so
because the logarithm term from the s channel (the
right-hand cut) cancels with the logarithm term coming
from the partial-wave projection of the t and u channels
(the left-hand cut). To be more precise, Eq. (I) can be
rewritten as

(2)

complex value of s in the upper-half plane and also to the
negative s axis. Putting s =x+iy, with y ~ 0, the zero of
the denominator of f (s), corresponding to the pole of
f (s), must satisfy the following conditions,

v
2

4 ER(v) —GR(v) —I/18(16tr )
m 2

f~(s) =
2

+ — ln —ln
s s s s —s+p s

96~v 2 96zv 2 m 2 96R2v 2 ~2 a

where p 0, a is some scale factor, and m, , is defined
as

fP( ) (f(0))2/[f (0) f(I)] (3)

where the s dependence is dropped for simplicity. Using
Eq. (2) in Eq. (3), it follows that

In the following, m, , is assumed to be positive. The loga-
rithm function is defined for s approaching the real axis
from above as follows: For s & 0, the phase of In( —s) is

in, while—that of ln(s) is zero; for s &0 the phase of
ln(s) is +i' while that of In( —s) is zero. Between the
gap O~s ~ p the logarithm functions are real. It is
simple to see that, with this definition of the logarithm,
the P-wave amplitude satisfies the reflection principle:
f)*(s)=f~(s*). The study of the singularity of f&(s) in

the complex s plane is now simplified to the study of its
analytic property in the upper-half s plane. Consider first
the two simplest unitarization schemes for Eq. (2), the di-
agonal [l, ll Pade approximant method and the 1(-matrix
approach.

(t) Pade approximant method —Denote the fi. rst term
on the right-hand side of Eq. (2) by f ( )(s), the tree am-
plitude, and the remaining term by f(')(s), the one-loop
P-wave amplitude, and where for simplicity the subscript
I is dropped. In the Pade method [4,5], the unitarized
partial wave can be written as f(0)+R f (i)( )

I —i[f' +R f"'( )l
(6)

and hence satisfies exactly the elastic unitarity relation,
Imf (s) =

)f (s)
~

. If follows that

m( x m(,
X =

96ttv 1+m, , /(96trv )

which are impossible to satisfy because y ~ 0. It follows
that the Pade amplitude does not have complex poles in
the complex s plane and is therefore acceptable as the
correct solution. The P-wave phase shift 8~ ~

is given as

2s m(
tana)~j =

96~ 2 m2

It is seen that the eA'ective range approximation given in

Ref. [I] is equivalent to the Pade [1,1] diagonal approxi-
mant method. The P-wave resonance width satisfies the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relation [6].

(ii) K-matrix method. —The K-matrix approach con-
sists in writing [7]

m

96+v m, ,
—s —im, s/96trv, (4)

2s m, , +s
96+v m, , i(m, , s/96—harv )(I+s/m, , )

Keeping in mind that this expression has both the right-
and left-hand cuts due to the logarithm terms as ex-
plained above, it can be analytically continued to the

where the logarithm terms are not written out explicitly.
This expression is also valid for s complex and also on the
real axis. The P-wave phase shift can be computed from
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this equation: persion relation. As an example, one can see that
Re [f (s) ] ' calculated from the dispersion relation,
given that the imaginary part is —1, must have a term
proportional to ln(s), apart from a polynomial due to the
subtraction; the perturbative result gives, however, Ref '

proportional to ln(s) and hence Re[f"(s)] ' must have a
term proportional to 1/ln(s). These diAerent behaviors of
Re[f (s)1 ' show the inconsistency between the disper-
sion relation and the K-matrix method when Ref ' is not
a polynomial.

The above discussion does not imply that it is impossi-
ble to modify the K-matrix method in order to restore the
correct analyticity. In a previous publication [9], it was
shown how to modify this method, using the dispersion
relation, to get a solution of the linear o. model in a sim-
ple manner; the solution presented is more general than
that given by the 1/N expansion of the O(2N) model. In
fact, the modified K-matrix solution given in Ref. [9] is
equivalent to the result obtained by the N/D method to
be discussed below.

Because the Pade method is constructed from the full
Feynman amplitudes, i.e., with both real and imaginary
parts, there is usually no di%culty with analyticity as for
the K-matrix method. This does not mean that the Pade
method is sacred, only that it is the simplest one. It is
also capable of giving artifacts. One must always check
that its solution is free from nearby unwanted singulari-
ties. It is now useful to examine whether other methods
of unitarization, the inverse amplitude and the N/D
methods, will lead to the same conclusion as the Pade
method.

(iii) Inverse amp/itude method This .—method is
directly related to the diagonal [1,1] Pade approximant;
however, it is more general. In fact, it will be sho~n
below that the Pade approximant is the first iteration of
the nonlinear singular integral equation obtained by writ-
ing down the dispersion relation for the inverse of the
partial-wave amplitude, fl '(s). Because the inverse of
an analytic function is also an analytic function, apart
from the additional pole contributions due to the zeros
of the amplitude, one can write a dispersion relation
for fl '(s). Define for this purpose fl (s) = (s/

I
96zf )g '(s); a dispersion relation can be written for
g(s), assulning that it has no zeros:

Img(s')
(10)

s (s s le)

tan6]"[ =
2

1+
2 ~ 2

(8)

It is seen that the P-wave phase shift cannot go through
90 to produce a resonance [8]. This is the contradiction
between the K-matrix and Pade methods. In the follow-
ing, it will be shown that the K-matrix solution has a pair
of complex-conjugate poles.

%hen s =x+iy, with y ~ 0, the following simultane-
ous equations can be solved for the positions of the poles
of f~(s):

y(1+4y '/m, ', ) '"=96~v '
(9)

x = —,
'

m, ,'[—
1 ~ (I+4y'/m4) 't']

with x ~ —m, , /2 because y~ 0. For a given value of
m, , , the pole positions can be found by numerical meth-
ods. To have a feel, one can assume m, , =8m v, corre-
sponding to the QCD theory with a p mass of 0.82 GeV;
Eq. (8) shows that f" has one pole in the upper-half s
plane at s =(—1.92+i 1.34)m, , and hence it also has
another complex-conjugate pole in the lower-half s plane.
This result is in contrast with the Pade solution, Eq. (4),
which has no complex singularity. Because these two
poles are very near to the physical region s =m, , and their
residues are large, the unitarized P-wave amplitude given
by the K matrix must be rejected.

The P-wave CPTh amplitude is rather special due to
the cancellation of the logarithm contributions of the
right- and left-hand cuts to give Ref ' (s) as a polynomi-
al. Other partial ~aves in CPTh and in other theories do
not have this property. Then, an argument, following the
same line as the inverse amplitude method to be discussed
below, can be made to show that there is a conAict be-
tween the usual K-matrix method and the dispersion rela-
tion. This is so because if f (s) were an analytic func-
tion as required by the general property of the partial-
wave amplitude, its inverse would also be an analytic
function and one should be able to write a dispersion rela-
tion for it. Now since [f (s)] ' =(f +Ref ' ) ' i, —
it is clear that its real part cannot, in general, be related
to its imaginary part by the Hilbert transform or dis-

g(s) =1+Ps+ ds' +-s' "", Img(s') s '
s' (s' —s —ie)

where p is a subtraction constant and is related to FR and GR. On the right-hand cut, the unitarity relation yields
Img(s) = —(s/96nf ), while on the left-hand cut s ~ 0, Img(s) = —(s/96trf ) Imfl(s)/~f ~(s)~ . On the left-hand cut,
Imf l (s) is usually given by the analytic continuation of a sum of the partial waves from the physical region. In one-loop
CPTh, Imfl(s) =(s/96lrv ) on the left-hand cut. Using this approximation in Eq. (9), a nonlinear singular integral
equation is obtained. As a first iteration of this integral equation, one can set perturbatively fi(s) =s/96trf for s ~ 0 to
get

1
2, 0 1g(s) =1+Ps —— — ds', ,

—
' ds' (11)96lr v "o s'(s' —s —ie) 96lr v " — s'(s' —s —ie)

which is simply the integral representation of the denominator of the Pade P wave amplitude, Eq. (4). -Although the
equivalence between the Pade [1,1] approximant method and the first iteration of the integral equation for the inverse
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amplitude is explicitly demonstrated for the special form
of the P-wave amplitude, it can be sho~n that the proof is
quite general.

(i v) 1V/D method. —Instead of writing an analytic
function with two cuts as the sum of two analytic func-
tions, one with the right-hand cut and the other with the
left-hand cut, as it was done for the inverse amplitude
method, one can write it as the product of the two cuts:
This is the N/D method [3,10]. The D function has only
the discontinuity across the right-hand cut and the N
function has only the discontinuity across the left-hand
cut. It is clear with the 1V/D method that one cannot
rederive the Pade amplitude because the logarithm func-
tions due to the contribution of the two cuts, written in

the N/D product, cannot cancel each other. Some ap-
proximation can be made in order to show that, with the
correct sign of the O(p ) term as given above, a P-wave
resonance can be generated. Writing f~(s) =N(r)/D(s)
and using the approximation of neglecting the one-loop
contribution to the N function, i.e., that of the t and u

channels, one can set N(s) =s/96trv . Using the elastic
unitarity relation, ImD(s) = N(s)p—(s) with p(s) =1 in

the chiral limit, one has

2 +ao
1

D (s) = 1+Ps —
' ds'

96tr v "o s'(s' —s —ie)

Defining m, , as the position where the P-wave phase shift
passes through 90' and absorbing the infrared divergence
of the integral in the definition of m, , one has

m
fi(s) =

96trv m, , —s+(sm, , /96tr v )In( —s/m, , )

(12)

where for s ~ 0, ln( —s) =]n(s) —itr The appe. arance of
the logarithm function in Eq. (12) is due to the N/D
method and the approximation of neglecting the NG bo-
son loop contribution to the left-hand cut in Eq. (12) and
was first given by Brown and Goble [11]. The vector
meson width satisfies to a good accuracy the KSRF rela-
tion [6]. Assuming that m„=8tr v as above, the expres-
sion for fi(s) has a pole on the real negative axis at
s= —1.6&&10 m, , and is 5 orders of magnitude larger
than the physical scale of interest. This pole can be re-
moved without the slightest inAuence on the low-energy
calculation.

The problem with the N/D method, as mentioned

above, is that it is not possible to justify the neglect of the
NG boson loop contribution to the N function. The final

result diAers little, however, from that given by the Pade
or the inverse amplitude method because the coe%cient of
the logarithm term in the N/D method is small.

In conclusion, all the known unitarization methods, the

Pade, the inverse amplitude, and the N/D, except the
usual K-matrix method, as applied to the P-wave chiral
perturbation theory, give rise to a P-wave resonance.
Indeed, in a recent QCD calculation, using the Pade
method and with the O(p ) term calculated from the fer-
mion (quark) loop contribution with the number of colors
N, =3, a p resonance was produced having the correct
observed mass and width [12] (m, , =24tr v /N, ). Using
the same O(p ) term, the usual K-matrix solution does
not give rise to the p resonance but introduces instead two
nearby poles in the physical sheet and hence must be re-
jected. It should be stressed again that, whatever unitari-
zation scheme is used, it is important to check, after the
calculation, the presence of nearby poles and cuts which
could invalidate the unitarization method.
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