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We examine the formation of nontopological solitons in a Yukawa theory with N fermions and a single
scalar field. We solve the theory to leading order in 1/N, for any value of the Yukawa coupling g. We
find that the full quantum theory supports nontopological soliton solutions, and that the quantum soli-
tons differ significantly from those in the classical theory. For large g, the energy scales with g, while the
radius decreases as 1/g. Thus, quantum corrections invalidate the classical picture of tightly bound fer-

mions inside deep bags.
PACS numbers: 11.10.Lm, 11.15.Pg, 12.40.Aa

The ever-increasing lower bounds on the top-quark
mass have generated renewed interest in field theories
with large fermion masses. In the standard model, the
top mass is given by the product of a Yukawa coupling g
and a vacuum expectation value v,

m=gv. 1)

The value of v is fixed to be about 246 GeV, so large m
implies large g.

Theories with large Yukawa couplings have a rich yet
subtle phenomenology. A characteristic feature of such
theories is that they support nontopological soliton solu-
tions, called bags [1-7]. In particle physics, the SLAC
bag played an early and important role in describing the
confinement of quarks inside hadrons [3]. In nuclear
physics, nontopological bags have been successfully used
to model the binding of nucleons within nuclei [6,7].
More recently, bags have also been discussed in conjunc-
tion with the phenomenology of the heavy-top-quark-
Higgs-boson system [8].

Nontopological solitons are coherent states in which
the expectation value of a scalar field is reduced from its
vacuum value by the presence of a fermion field. The sol-
itons carry fermion number because the fermion is ener-
getically bound to the bag. They are stable because they
have lower energy than any other configuration with the
same quantum numbers. The solitons form because the
energy gained by decreasing the fermion mass is greater
than the energy lost through the potential and gradient
terms in the scalar-field Hamiltonian. At the classical
level, as the Yukawa coupling gets large, the fermions be-
come tightly bound inside deep bags, whose energy and
radius are independent of g.

In the full quantum theory, however, quantum correc-
tions can be very important [1-7], especially in the non-
perturbative regime of large g. One must check to see
whether bags still form. There are two types of quantum
fluctuations to consider: those in the scalar field, which
can destroy the coherent state, and those in the fermion
field, which can collapse the bag and even destabilize the
vacuum.

In this Letter we examine bag formation in a consistent
quantum field theory. We consider a theory with N
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Dirac fermions y' coupled to a real scalar field 9. We
solve the quantum theory to leading order in the large-NV
expansion for any value of the Yukawa coupling g. We
find that the full quantum theory supports nontopological
bags. The bags correspond to bound states of N fer-
mions, with a binding energy of less than about 5%. The
quantum bags differ significantly from those in the classi-
cal theory, where the binding energy approaches 100%
for large g. The quantum corrections invalidate the clas-
sical picture of tightly bound fermions inside deep bags.

We shall first present our model. The Lagrangian den-
sity is

A
Lo= 'f(am)z—#wg—ugzv)z

N .
+2 v

i=1

ir— 2% |y, @)
N

IV
where the subscripts signify bare quantities, and all N
dependence is explicitly shown. The Lagrangian is
characterized by three parameters, ug, Ao, and go. The N
dependence is chosen so that fermion-loop contributions
are of the same order as the tree-level couplings. The
boson-loop contributions, however, are suppressed by at
least one factor of V. This implies that the bosonic fluc-
tuations can be ignored, and the scalar field can be treat-
ed as classical for any value of the Yukawa coupling [9].

From Eq. (2) we see that the field ¢o develops a vacu-
um expectation value (¢o?#0. To compensate for this, we
shift ¢o=+/Nvo+ oo, where vg is chosen so that (co) =0.
At tree level, vg is just ug. Then the mass of the field oo
is o =A4"%vo, while the fermion mass is 70 =govo.

To solve the model to leading order in 1/N, we com-
pute all diagrams with a single fermion loop [10]. As
usual, we must specify a renormalization condition for
each bare parameter. We define the wave-function renor-
malizations in the standard way,

dry dri®
S =}, ¥ =1, 3)
dp® |p=o0 dp |p=o

where I'{2) and Fv(,i,—) are the renormalized one-particle ir-
reducible two-point functions for the renormalized fields
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o and y. We then fix the bare parameters ug, Ao, go, and
vo through the following renormalization conditions:

rél)=0’ F(S%‘)IP=0=_#2’
4)
r.ﬁt')lp=0= -m, F(B) |p,=0= _g/\/I—V—

oyy

The vanishing of the one-point function Fé') ensures that
we are expanding about the minimum of the effective po-
tential. The other three conditions define the renormal-
ized masses of o and vy, as well as the renormalized Yu-
kawa coupling g.

The Lagrangian (2) together with the renormalization
conditions (3) and (4) define the full quantum theory.
The quantum effective Lagrangian can be written as the
sum of two terms,

L =s£fermion+ Lscalar . (5)

The first term receives no quantum corrections,

N
Lfermion = 'El V_" 'I/l ) (6)
i=

vN

where ¢=~Nv+o and v=m/g. The second term is
modified by the fermion loops. It can be written in a
derivative expansion,

Lscalar=£(0)+=£(2)+£(4)+ cee (7)

where £ © is minus the effective potential,

4
O —qypm— | * 4 & 21 ,2N)2
L Y [SN 327r2N](¢ v*N)

4 4 2
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with A =u?%/v?, and

o_1|,_ g ¢’ 2
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As usual for Yukawa theories, the full quantum theory
is afflicted by many problems [10], including a Landau
pole, a tachyon, and vacuum instability. They result
from the fact that the theory is not asymptotically free,
and indicate that (5) must be viewed as the solution to an
effective theory, valid for energies and momenta below
some scale A. The scale of A depends on the Yukawa
coupling g. For small g, A is exponentially large and can
be safely ignored. For large g, however, A plays an im-
portant role. The size of A can be found by expanding
the scalar field propagator in powers of p2/m?,

2 4
Q) e —,,2 2 g P 4 ...
| g u-+p-+ YS! + . )

For u <m, we find a tachyon pole at —p? =~ 80r%v2=A2
Requiring m S A puts a limit of g <30 on the Yukawa
coupling. Subject to this condition, (5) describes the
complete solution to the quantum theory [11], to order p*
in the derivative expansion, and to leading order in 1//V.

We will now demonstrate that the quantum theory sup-
ports bag solutions. In the large-/V limit, however, bags
do not form about a single fermion, but only when many
fermions are present. We shall see that the bag lowers
the energy of the N-fermion state, indicating the forma-
tion of a bound state, similar to a baryon in the large-N
expansion of QCD [12].

We expect the lowest-energy state of given fermion
number to have a static scalar-field configuration. The
energy of the state is

E =Escalar+Efermion . (10)

For static configurations, the scalar energy is given by

Escatar = _fd3x Lscalar - an

The fermion energy is found from the positive-energy
solutions to the Dirac equation in the presence of the sca-
lar field ¢. If ¢, denotes the spinor solution with (posi-
tive) energy €,,

_ia'v+_‘/gﬁﬂ¢]ca=faCaa (12)

normalized so that [d3x ¢J¢, =1, the total fermion ener-
gy is just
Efermion=znafa s (13)
a

where the n, are the occupancy numbers of the energy
eigenstates, and X ,n, =N is the total fermion number of
the state.

In the lowest-energy state with fermion number 1, the
scalar field has a constant expectation value, (¢) =+vNuv,
and ¢ is a free Dirac spinor of mass m =gv. Thus, there
is a solution to the quantum theory with fermion number
N and energy E =mN, consisting of N free Dirac spinors
in a constant scalar-field background. For sufficiently
large Yukawa coupling, however, there are also soliton
solutions, with (¢) <~+/Nv in the presence of N fermions.
The soliton is stable if this state has energy E < mN.

For large g, there are two effects to consider: the scalar
field becomes strongly coupled to the fermion, and the
quantum corrections become important. Therefore we
proceed in two steps. We first examine the classical
theory, which corresponds to dropping the terms L™
with n> 2, as well as dropping the terms in £ and
L that depend on g. In this case it is well known that
the theory supports finite-energy baglike solutions, with
{¢>=¢(r), as shown in Fig. 1(a). (The solution is plotted
for the values g =25 and A =1. Our numerical work was
done with the aid of the program coLsys [13].) The
solution has fermion number N when the lowest orbital of
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FIG. 1. Profiles of the bag solutions in the (a) classical and
(b) quantum regime, for g =25 and A=1. The solid line marks
the bag profile ¢(r)/~/Nv, while the dashed line denotes the fer-
mion number density.

each fermion is occupied. The energy per fermion is
E/N =6.3v <250, so the N fermions are tightly bound.
Such configurations are known as ‘“deep bags™ because
¢(r) deviates significantly from its vacuum value v.

We now consider the quantum theory. For large g, the
quantum corrections significantly modify the potential
and the scalar gradient energy. They also induce higher-
derivative terms in Lgcaar. It is straightforward to solve
the quantum equations of motion [10]. We drop the
terms L™ for n>2. (We have checked that this
changes the soliton energy by less than 1% for g <30 and
A=1.) As in the classical case, we find finite-energy soli-
ton solutions, as shown in Fig. 1(b). (The solution is
plotted for g =25 and A=1.) We see that the quantum
corrections dramatically alter the size and shape of the
bag. As above, the solution has fermion number N.
Now, however, the energy per fermion is E/N =23.8v, so
the fermions are only weakly bound to the bag.

In Fig. 2 we see how the soliton energy scales with g
for A=1. For small g, the classical and quantum bags
are similar, with E <mN for g2 4. For larger g, the
bags begin to differ. In the classical case, the energy is
independent of g for large g. In contrast, the energy of
the quantum bag scales as E/N == 0.95gv, while the ra-
dius goes as R~1/gv. The quantum corrections imply
that the fermions are weakly bound to a small and shal-
low bag, with a binding energy approaching about 5% for
large g. In fact, a simple scaling argument [10] shows
that this asymptotic 5% binding energy is independent of
A.

In this model, the quantum corrections to the energy
have a simple physical origin which can be understood in
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FIG. 2. The (a) classical and (b) quantum bag energies
E/Nv, as a function of Yukawa coupling g, for A=1.

terms of the Dirac equation. The presence of the bag
changes the energy eigenstates and eigenvalues. It shifts
the valence orbitals and the Dirac sea levels. Equation
(13) explicitly accounts for the change in the valence or-
bitals. The shift in the Dirac sea is included implicitly,
through the quantum corrections to .Lyc,.r. These correc-
tions automatically sum the shift in the Dirac sea. To
leading order in 1/N, the two effects give the entire
change in the energy [2].

We would like to stress, however, that the simplicity of
the picture presented here is a feature of the large-N lim-
it of the Yukawa theory. For finite NV, the bosonic fluc-
tuations modify the field equations for the nontopological
soliton solution. This changes the details of our picture,
but it does not alter our main point: that quantum soli-
tons can differ dramatically from their classical counter-
parts.

In this Letter we have used the large-/V expansion to
find nontopological soliton solutions to a quantum Yu-
kawa theory. For large couplings, the energy of the
quantum bag scales with g. This implies that bags can
indeed be used to model nuclei with their relatively small
binding energies. In fact, bag formation provides a pow-
erful, nonperturbative technique for finding bound-state
solutions. We have also found that quantum effects
deflate deep-bag solutions. This raises serious questions
about using the SLAC bag as a realistic picture of quark
confinement. If we trust the general features of our re-
sults all the way to V=1, we are also led to conclude that
bag formation does not play a major role in top-quark
physics.
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