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Model Identification by Periodic-Orbit Analysis for NMR-Laser Chaos
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It is shown that the conventional Bloch-KirchhoA' description of NMR-laser activity needs the in-

clusion of a nonlinear relaxation term for the transverse magnetization in order to account for the exper-
imental observation. The validity of the modified equations is demonstrated by comparing in a two-
parameter space the Poincare sections and periodic-orbit structures of model and experiment. All unsta-
ble orbits up to order nine have been extracted and employed to obtain an approximation to a generating
partition.

PACS numbers: 05.45.+b, 76.60.—k

In this Letter, we present a detailed analysis of high-
quality (i.e., low-noise, drift-free, long) time series from
an NMR-laser system with modulated parameters and
propose an extension of the conventional Bloch-KirchhoA
description which yields very good quantitative agree-
ment with the experimental observation. We investigated
the bifurcation structure of the system in a two-pa-
rameter space, constructed Poincare sections, and ex-
tracted all unstable periodic orbits up to order nine. This
allowed us to demonstrate the validity of the extended
Bloch-type equations and evaluate the topological entropy
Ko by means of explicit construction of the symbolic dy-
namics directly from the embedded time series.

The NMR-laser [1] activity is provided by the nuclear
spins of the "Al in a ruby crystal, placed at a tempera-
ture of 4.2 K in a static magnetic field Bo of magnitude
1.1 T. The total nuclear magnetization M=(M„,M~,
M.-) precesses with the NMR frequency v, =12.3 MHz.
The population inversion is obtained by means of a mi-
crowave pump (dynamic nuclear polarization) [1] and
the resonance by enclosing the active medium in a cavity:
in our case an LC circuit, tuned to v, for single-mode
selection, which provides the feedback radiation field B
(proportional to the current in the circuit) necessary for
coherent spin-Aip behavior. Furthermore, the cavity is
forced to operate with a modulated quality factor Q(r)
=Qo(I+AcosQt), where 0 6 (350,800) s ' and
E (0,0.03). The "laser output" is proportional to the

transverse nuclear-magnetization amplitude M, = (M„
+M,') '".

The extended Bloch-type laser (EBL) model in the
rotating-frame approximation [2] reads

x =a[y —x/f(r )],
y = —y(1+ay)+rx —xz,

~ = —bz+xy,

where x cc Bt y tx' Mt ~ 0, z cc Mz Me ~ Bt represents
the rotating field amplitude and M, the pump magnetiza-

tion. The proportionality factors, as well as the parame-
ters o.=4.875, r =1.807 txM„and b =2X10, depend
on various physical constants [2]. The function f(r)
= I+2 cos(roe ) describes the modulation with frequency
rod (0.014,0.034) and r is a rescaled time. Equations
(1) reduce to the Lorenz system [3] for a =2 =0. Under
these conditions, the asymptotic attractor is the fixed
point x =y =x =[b(r —1)] '~, z =z* =r —l.

The diAerence with the conventional model consists of
the term —ay, where a =0.2621, which describes a
nonlinear damping for the transverse magnetization y
(recall that y ~ 0). This term is essentially the first non-
linear contribution in a series expansion [4] and has been
introduced to account for the observed decay of the laser
output (relaxation oscillation) to a stable fixed point in
the absence of the modulation (A =0), after Q switching.
The corresponding time evolution of y(t) vs t is displayed
in Fig. 1 for both experiment [Fig. 1(a)] and model [Fig.
1(b)]: In the latter case, we also marked the position of
the peaks (circles) and indicated (dashed line) the en-
velope of the damped oscillation obtained from the con-
ventional model (a =0). The manifest discrepancy is not

surprising, since the phenomenological Bloch equations
often provide incorrect predictions in solids [5]. It must
be stressed that the correction term is actually very small:
Iil fact, by setting (X, Y,Z) = (x/x, J/x, (z z )/x )
and rescaling time r to T.

" = ~ x *, we obtain the term
—Y(1+a'Y)/x*, where a'=3.33&&10 and YE (0,3)
for all considered 2 values. This transformation also
shows that X can be adiabatically eliminated, since
cr o' = 384)) 1, so that X= Vf(r') and Y never

changes sign [4].
The study of the transient behavior after Q switching

provides a first confirmation of the validity of our ap-
proach, although limited to a short time interval (0.2 s)
and to a single-parameter choice. In order to extend our
analysis to generic asymptotic motion, we considered the
Q-modulated laser which can exhibit chaotic behavior
[6]. The correspondence between model and experiment
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FIG. 1. Time evolution for the transverse magnetization y(t)

(in arbitrary units) vs time t (in s), after g switching: (a) ex-
periment; (b) EBL model. The circles represent the peaks of
the corresponding curve (the dashed line is its envelope) ob-
tained from the conventional model: In this case, both decay
rate and relaxation frequency are incorrectly reproduced.

A

is shown by performing a sequence of increasingly more
stringent tests: comparison between bifurcation dia-
grams, stability regions in the co-2 parameter space,
Poincare sections, and sets of unstable periodic orbits.

The phenomenology of the EBL system (1) can be dis-
cussed with reference to Fig. 2 [7], where the ru-A pa-
rameter space is displayed. Various domains of stable
periodic behavior are shown for both experiment [Fig.
2(a)] and model [Fig. 2(b)]. The two pictures are in very
good agreement to within the effect of experimental
noise, which destroys thin stability regions in 2(a). The
finiteness of the measurement resolution for the parame-
ter values (2 or 3 digits) also contributes to the uncertain-
ty of the comparison: The period-5 stable orbit visible in

2(a), for example, has been detected only as unstable in

2(b). The conventional Bloch-Kirchhoff equations, on
the other hand, exhibit a behavior which is only qualita-
tively similar to that shown in Fig. 2 [6].

Several bifurcation diagrams for the variable J have
been experimentally recorded as a function of A, at
different ru values. The accuracy of model (1) has been
confirmed in the whole parameter range shown in Fig. 2

by comparison with the numerical results. Five crisis
lines [8] have been detected in the chaotic region where
the strange at tractors collide with different unstable
periodic orbits.

A more severe test for the EBL equations has been per-
formed by studying chaotic attractors for various param-
eter values, both in the full embedding space and on Poin-
care sections [9]. Scalar time series [gl, (2, . . . , (~], con-

FIG. 2. Regions of existence of the main stable periodic or-
bits for the NMR-laser system in the parameter space ro-A: (a)
experiment; (b) EBL model. The frequency is reported in units
of the rescaled relaxation frequency co, =0.0163. Two diAerent
periods two and four (marked as 2, 2 and 4,4*) coexist.
Multistability regions are delimited by dashed lines. The circles
in (b) indicate the points (1.944,0.018), (1.944,0.0185), and
(2.15,0.027) at which the periodic-orbit analysis has been car-
ried out.

sisting of 1V =8 x 10 twelve-bit integers, have been
recorded by sampling the transverse magnetization M, (t)
with a frequency v=25/T, where T=2rr/0 is the period
of the forcing term: i.e., g; =M, (i/v) The data ar.e then
embedded in an E-dimensional space by constructing vec-
tors of the form vt, = jest„gt, +s, . . . , (t, +5(~-ilj, where
5/v is the appropriate delay time [9]. Portions of trajec-
tory which lie close to the unstable periodic orbits of the
system have then been identified by requiring them to re-
turn in certain (spherical) regions of radius R within
selected time intervals (chosen around multiplets of T, up
to 9T). The precision R with which the detected re-
current orbits shadow the actually periodic ones has been
chosen to vary with the position in phase space, in order
to minimize the relative error in the search. Further-
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FIG. 3. Two-dimensional projections of the Poincare section for A =0.018 and m =0.03168, and binary partition with elements la-

beled 0 and l. The intersection points of the (a), (b) period-3 and of the (a'), (b') period-9 cycle are labeled in order of occurrence:
(a) experiment; (b) model.

more, R is proportional to JE and independent of the
sampling time I/v, so that the results are consistent
throughout the physically meaningful variation range [9]
for F. and v. A Newton method has been used to locate
the periodic orbits of the diA'erential model (1). All cy-
cles up to order nine have been compared with the experi-
mental ones and found to agree very well in embedding
spaces of dimension F between 6 and 16. In fact, the in-
formation dimension D~ [9] for all considered strange at-
tractors (the corresponding parameter values are indicat-
ed by circles in Fig. 2) is between 2. 1 and 2.4 [10], so
that 2D&+1 & 6.

In order to obtain a more complete characterization of
the dynamics, we have constructed Poincare sections Z by
considering embedded points vt, which lie 25 time units
apart from each other (the system is, in fact, externally
forced). The intersection points of the unstable cycles
with X have then been assigned a diAerent symbolic label-
ing through a binary partition [9] $ =[ho,h~j. Recall
that a generating partition associates a unique phase-
space point to each infinitely long symbolic sequence
(among which are the periodic ones). Hence, the parti-
tion 2) constitutes a good approximation to a generating
one, since it distinguishes all periodic points up to order
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nine [11,12(b),12(c)]. Of course, separating periodic
points is a necessary (although not, in general, su%cient)
condition for 2) to be generating. In Fig. 3, we report ex-
perimental [3(a) and 3(a')] and numerical [3(b) and
3(b')] strange attractors on a two-dimensional projection
of the Poincare section Z for A =0.018 and co =0.03168,
together with the curve defining X). Notice the intersec-
tion points of a period-3 orbit [3(a) and 3(b)] and of a
period-9 orbit [3(a') and 3(b')] with Z. The former one
lies "on the border" of the attractor and gives rise to a
crisis for 2, =0.01802.

The analysis of the symbolic dynamics, performed with
the unfolding method of Ref. [12], leads to a description
in terms of a full binary tree over the two primitive words
w~ =1, w2=01 for both experiment and model up to
hierarchical level 4 (the longest orbit of which is
01010101). In fact, the only experimental forbidden se-
quence is 00, ~hereas numerical calculations show that
also three strings of length 9 are not allowed. The topo-
logical entropy is therefore approximated by /0=0. 481
=ln[(1+ JS)/2] [12(b)] at the experimental resolution.
The prime cycles [13] have the following encodings: wi,
W2& W2WI~ W2WI & W2W I~ W2WI & W2WI o W2WI o W2WI 1 W2WI &

2 2 3 2 2 4 2 3 5

wzwi, wzwi, w2wi, w2wi, and wzwi, where w denotes3 2 2 4 6 2 5 7 fl

the nth repetition of word w. The logic-tree representa-
tion of the symbolic dynamics constitutes an invariant to-
pological characterization of the system. The full coin-
cidence found between measured and numerical data
(confirmed for the other two time series) clearly shows
that the EBL model indeed describes the experimental
observation up to the available resolution. A more com-
plete characterization of the dynamics, which includes
metric invariants as well (sequence probabilities, scaling
functions, thermodynamic averages [13], and complexity
[12]),will be presented elsewhere [4].
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