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Rigorous Results for the One-Electron Kondo-Lattice Model
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The ground state of the Kondo-lattice model with one conduction electron is analyzed. A rigorous
proof is given that this system forms an incomplete ferromagnetic order with S&,i =(N —1)/2 for antifer-
romagnetic exchange coupling. The wave function of the ground state is derived and some of its proper-
ties are discussed.

PACS numbers: 75.30.Mb

In recent years the Kondo-lattice model has attracted
much interest as a model to describe the so-called heavy-
fermion systems and also as one of the typical models of
strongly correlated electron systems [1]. This model con-
sists of a lattice of N localized spins (S; = —, ) interacting
with extended electron states in a single conduction band
(with second quantization operators c;t and c;,). In its
simplest version the Hamiltonian is given by

P = tg gc;~pep 2 Jg [S; (ct1C(1 cticti)

+S; ciIC(1+St chic;1] . (1)

The first term denotes the hopping of the conduction elec-
trons between nearest-neighbor sites with a hopping ma-
trix element —t. The interaction between electrons and
localized spins is given by the second term as an exchange
coupling (J & 0 for antiferromagnetic and J & 0 for fer-
romagnetic coupling). This model is based on the more
fundamental periodic Anderson model and can be derived
from its strong-coupling limit [2].

Much effort has been invested to study this model.
Various approaches, like the I/NI expansion [3] or the
Gutzwiller variational method [4], have led to a good un-

derstanding of the formation of a coherent electron band
with a heavy mass. Concerning, however, magnetic prop-
erties or the microscopic mechanism for unconventional
superconductivity found in some heavy-fermion com-
pounds, these descriptions are still rather poor and

rigorous results obtained so far are rare. Very recently,
several groups studied the finite-size ID system with nu-

merical methods such as the quantum Monte Carlo
method (for a half-filled conduction band) [5] or Lanc-
zos' exact diagonalization method (for various electron
concentrations) [6]. In these studies it was found that for
the half-filled band the ground state is antiferromagnetic,
a total spin singlet. However, lowering the number of
electrons, the system develops a ferromagnetic correlation
at very low concentrations [6]. In this Letter we shall
consider the limit of low electron concentration. By con-
centrating on the special case of just one conduction elec-
tron we will derive some rigorous results for the system
with antiferromagnetic coupling (J & 0).

To find the ground state of the one-electron system we

N N

~+) = g I 'c;ti+ g I 'c;t1S ~FM),
i

(2)

where ~FM) denotes the electron vacuum and the aligned
localized spins, all spins up. This state has the spin quan-
tum numbers St,t =Sf,i =(N —I)/2 in the case I '+QJI I'

=0 for all i. The Schrodinger equations for the coef-
ficient I ' and I ~ are

—ter'+ + -„' Jr' —,' Jr,'=Er', —

—t+ Ij'+' ——, J I '6; + —, J I '(28; —I ) =EI '.
(3)

These equations are easily solved by Fourier transforma-
tion, leading to the eigenvalue equation

e(k)+ —+J J
4 2

F(E)
I —(J/2) F(E)

(4)

where

I 1

N q E+J/4 —e(q)

start from a simplified Hamiltonian whose transversal
exchange coupling is omitted, keeping only Ising-
like coupling. Obviously, the ground state of this system
has the energy E =e(k =0) —

~
J(/4, where a(k)

= —tg, exp(ik a) with the sum over all nearest-
neighbor vectors a and a(0) = zt (z—is the lattice coordi-
nation number). This state corresponds to a complete
alignment of all localized spins and an electron described
by a plane-wave state. In this way no scattering occurs
for the electron and a maximal gain of kinetic energy is
possible. The electron spin is parallel to the localized
spins for J & 0 [S«i =(N+1)/2] and antiparallel for
J &0 [St,i =(N —1)/2].

We now include the transversal part of the exchange
interaction (spin Ilip). No modification of the ground
state happens for the case J & 0, since it has maximal
St,i, so that the transverse coupling is ineffective. There-
fore, let us further concentrate on the more interesting
case J & 0 whose state including spin-flip processes can be
written as
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The form of the wave function is given by

I g I
—ik r; —iq (r; —r~) I - k E+J/4 g(k)

E+J/4 —~(k+q) '

and the normalization condition N(~I "~ +Pq~I q ~
) =1. Note that the state with the lowest energy has the momentum

k =0.
Before considering properties of this state we give here a rigorous proof that this state found is the ground state.
Theorem. —The ground state of the Kondo-lattice model with one conduction electron has the total spin quantum

number S&,t =(N —1)/2 and is unique apart from the (2St,t+1)-fold spin degeneracy, if the hopping matrix element
( —r) is negative and the exchange-coupling constant is negative (antiferromagnetic coupling).

Proof. —We use the following site representation for the basis states in the Hilbert space:

~ js;s ~, . . . , sz) =scjt ~electron vacuum) (g) ~s (, . . . , sz) (7)

(~s), . . . , s~) is the localized spin configuration), where we introduce the phase convention that a negative sign is at-
tached to wave functions with a spin-down electron (s,s„=+1 and S„'~js;s(,. . . , s~) = —,

' s„~js;s(,. . . , sjv)). The
Schrodinger equation in this representation has the form

i'Y
(js;s~, . . . , s~& = —tg (is;s), . . . , sz& —

4 Jss~~ js;s), . . . , s~&

+ 4 J(1 —ss)) IJ s'st, ~,sj —I, sj,sj+), , sw) .

It is essential for this proof that none of the oA'-diagonal
elements of the Hamiltonian matrix is positive for J & 0
and —t &0.

The Kondo-lattice model has the full rotational sym-
metry in the spin space, so that the total spin St,t as well
as its z component St,t are good quantum numbers. It is
easily seen that in the given basis the Hamiltonian is
decoupled into IV+2 subspaces labeled by St,&

=M, since
all basis states are eigenstates of St,t. Furthermore, for
finite J inside these M subspaces, no additional decou-
pling occurs; i.e. , for two arbitrary basis states a and P
with the same St,t there always exists an integer n with

(a~& "~P)~0. Because each M subspace is connected and
all oA'-diagonal matrix elements of the Hamiltonian are
not positive, the Perron-Frobenius theorem states that the

lowest eigenvalue is unique and all components of its
eigenvector have the same sign, say positive. Therefore
the ground state ~ys(M)) in each subspace is nondegen-
erate and has a positive wave function.

The next step is to show that this eigenstate has the to-
tal spin S&«= —,

' (N —1). Since this eigenstate is nonde-
generate in the M subspace, it also must be an eigenstate
of the Casimir operator St,t. Therefore it is enough to
construct a state ~p), with S(«= 2 (N —I), S(« =M such
that (p~yg(M))&0, because states with different S„tare
orthogonal to each other [7]. For this construction we
start with a state in the subspace Sf« = —,

' (N —1) which
has the electron localized at the site j forming a spin sin-
glet with one of the localized spins, say S).

l(t(l (N 1)))=Ij,+1;——1, +1,+1, . . . , +1)+Ij,—1;+1,+1,+1, . . . , +1&.

Note that the relative plus sign in this singlet combination results from our phase convention for the basis states. Obvi-
ously, this is a state with S&«= —, (N —1). By the application of the total spin lowering operator S&«we change S&,t, but
keep St,& fixed. Thus, a state with St,t =M is obtained by

((t(M)& =(S...)' "'
((t ( —,

' (N —1))&.

Because the electron spin and the localized spin at the site 1 are coupled to a singlet ~(t)(M)) is given by

~(((M)) =( );t+S,-+S;+ +S-)' -'"'-
~(((-,' (N —I)))

—(S
—+. . . +S —)(Jv —))/2 —

M~p(
~ (N I )))

(10}

= [a (N+» —M] g [lj, + I; —I,», , sw)+ li, —I;+ l, s2 ~ ~ ~ sN)], (»)
'~ 2&

where P' denotes the summation under the constraint sz+ . . +sz =2M. Obviously, ~(t (M)) is a non-negative vector
in our basis. Consequently, ((t(M))ys(M))a0, since ~ys(M)) has only positive components. Thus, the theorem is

proved. It is clear that in the complete Hilbert space the ground state has the spin degeneracy 2St,t+1 =N.
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This theorem holds for all dimensions if J (0 is finite.
Furthermore, it is valid also if the electron hopping goes
beyond nearest-neighbor hopping, as long as all matrix
elements are negative. Even if some hopping matrix ele™
ments are positive, the theorem is still valid if they can be
transformed into negative ones by assigning appropriate
phase factors to the basis functions. The proof is not
based on the translational symmetry of the system.
Therefore, it is also true for systems which have a certain
disorder: The hopping matrix elements may depend on
the position as long as they are negative. In the same
way J may be site dependent, but must always be nega-
tive. Even long-range exchange interaction J;j between
the localized spin at the site i and the electron at the site

j does not aA'ect the theorem.
A remark is necessary here for the case J= —~ with

the translational-symmetric Kondo lattice. For this ex-
treme exchange coupling the electron forms a complete
singlet with the localized spin at the site it is occupying.
As shown in Ref. [8] this system can be mapped to one
which obeys the Nagaoka theorem [9]. Therefore, in a
strict sense the theorem is only valid in the two- and
three-dimensional lattices. However, in the case of a 1D
system the ground states with diA'erent St,& are degen-
erate.

Since we have derived one of the N degenerate
ground-state wave functions, we can discuss here some of
its properties. One important point is the coherence
among the localized spins given by

M'ss(r; —r, ) =(S; S,&
—(S;).(S,)

=g
I I q I

'cos[q (r; —r, )], (12)

where (S;)=(S()=0 and (S;)= ' (I/N)gqlIql . In
the limit I JI((zt the long-range behavior of BKss(r) is
essentially exponential as obtained by approximating the
energy E = e(0) +J/4. For lr I much larger than the lat-
tice spacing Eq. (12) can be replaced by an integral
(3D),

The electron moving in the lattice of localized spins is a
magnetic polaron, accompanied by a spin-polarization
cloud. This cloud is described by the correlation function
between electron and localized spins:

K,s(r; —r/) =N(S„'S~)

2

gr,e, (is)1 N -p 1 -p iq(r; —r)
4 2 JN

where for simplicity the constant (S„&.(S/) is not sub-
tracted. For small IJI the K,s(r) is obtained in a similar
way as bKss(r),

' 2

K„(r)=———Ir I i+1 N -p2
4 2 4tt('

where the coherence length is the same as in Kss(r) [Eq.
(13)]. Thus g is also the length scale of the extension of
the spin-polarization cloud. For large IJI this extension
also shrinks down to on-site correlation only, for J

This can be illustrated also by considering the on-site
correlation K,s(r =0) as a combination of a spin-singlet
and a spin-triplet configuration: K,s(r=0) =( —3ly, l

+lyII')/4 with ly. I +1@ii =1. For very small IJI the
distribution is I y, I

=
I y, I

= —,
' (note that the symmetry

of the system is broken for every finite J). With increas-
ing I J I the weight shifts towards the singlet configuration
in order to gain exchange energy, leading finally to
I y, I

= I at J= —ee (Fig. I). In the case that the on-site
coupling is completely singlet there is no correlation with
neighboring sites and the spin-polarization cloud has no
extension.

Carrying a spin cloud the electron must have an en-
hanced eAective mass compared with the bare electron
mass. This mass m* characterizes the charge excitation
of the system whose spectrum is given by the k-dependent
energy Fk defined by the eigenvalue equation, Eq. (4).
Considering a simple cubic lattice the eAective mass is

Iq' r
M'ss(r) = Ir I

' —,„d'q
2tr '" tq' J2 '—

' 3/2

=Ir'I' (13)
2t 8~

1.0

with the coherence length (=42t/I JI. As I J I increases
the coherence length decreases. Thus, turning to large
IJI (»zt), the lattice spacing becomes a natural cutoff
for the coherence and the correlation function tends to
the form

~Kss(r) =If I'—Xe'q',
Ã q

(i4)

where we used that F. = 3J/4 for J —~. This sum is
the lattice 6' function, so that there is no correlation for
finite r.
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FIG. l. On-site electron-spin-localized-spin correlation sub-
divided in singlet (I y, I ) and triplet (I y&I') contributions for a
3D system. The nonlinear scale of J corresponds to J/
( zt/2+J)—
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given by
r

m' I t] Ek
mp m

(17)

where s(k) is taken as k /2mp for small k. This mass ra-
tio changes continuously from 1 at J=0 to 2 at J= —~.
This latter ratio 2 is due to the fact that the electron is
combined into an on-site singlet with the localized spin.
The overlap integral between two neighboring singlets re-
normalizes the eA'ective hopping term by just a factor of

I

2

We have demonstrated that the one-electron Kondo-
lattice system with antiferromagnetic coupling has a
ground state which is incompletely ferromagnetic. Obvi-

ously, in the case of ferromagnetic coupling the complete
ferromagnetic state has the lowest energy. These results
may have importance for the future study of the Kondo-
lattice problem as a well understood limit of this model.
The exact solution for the ground state also represents a
rigorous description of a magnetic polaron in a system
without exchange coupling between the localized spins.

As we indicated above there exists a certain relation-
ship with the system analyzed by Nagaoka (for J= —~
even the two systems are completely equivalent) [9]. In
the one-hole Hubbard model the Nagaoka theorem is

rigorously applicable only in the limit of infinite on-site

correlation. On the other hand, the results discussed here
are valid for the whole range of the exchange-coupling
constant J in the one-electron Kondo-lattice system.
They also cover realistic values of J in all dimensions and,
therefore, we may expect that this type of ferromagne-
tism could be realized in some rare-earth compounds.
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