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Phase Transition in Small Metallic Junctions with Quasiparticle Dissipation
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We report Monte Carlo simulations for the 7=0 phase diagram of a mesoscopic metallic junction.
We present some evidence of a T=0 phase transition induced by the dissipation strength a. In the
strong-coupling region the predictions of the spin-wave theory turn out to be correct and the algebraic
decay of correlations implies quasi-long-range order, corresponding to the absence of a Coulomb-
blockade voltage threshold. The critical junction resistance is estimated to be R, = 0.6 kQ.
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The study of the quantum-mechanical behavior of
macroscopic systems has attracted much attention from
both the theoretical and the experimental points of view
[1,2]. In their seminal paper, Caldeira and Leggett
showed that in these systems it is crucial to consider the
role of dissipation [2]. Starting from the Caldeira-Leg-
gett model, Schmid has shown that a Josephson junction
with Ohmic dissipation undergoes a (7'=0) phase transi-
tion from a resistive to a superconducting state depending
on the dissipation strength [3] a. The critical value of the
dissipation is universal, i.e., it does not depend on the oth-
er coupling constants (the Josephson and the charging en-
ergies) of the system.

Guinea and Schon [4] investigated the dissipation aris-
ing from quasiparticles; they showed that also in this case
the system has a phase transition. In this case, however,
the critical value of a depends on the Josephson energy
E; and the charging energy E¢. In the limit in which E;
vanishes (normal-metal junction) the model is isomorphic
to an XY model in one dimension with an interaction de-
caying as n "2 (n being the distance between the lattice
sites). This last model was studied by Kosterlitz [5] who
showed that it should not have any phase transition. This
should imply that a normal mesoscopic junction at 7 =0
always exhibits a Coulomb-blockade region in the 7-V
characteristics [4] if V < V¢ (V¢ is, eventually, exponen-
tially small for large dissipation strength).

By contrast, in a recent work, Brown and Simanek [6]
advanced the possibility of a phase transition in the one-
dimensional XY model with 1/n? interaction, which re-
sembles the Kosterlitz-Thouless-Berezinskii (KTB) tran-
sition, by means of a Monte Carlo simulation. As is well
known, a one-dimensional system can undergo a phase
transition when the interaction is sufficiently long ranged
(as in the 1D Ising model with 1/n? interaction [7]). For
the one-dimensional XY model the n ~? interaction is a |
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marginal case and the situation is not clear. Using the
Bogoliubov inequality it is possible to prove the absence
of a spontaneous magnetization at finite temperatures.
The analysis of the model in the spin-wave approximation
showed that the power-law decay of the correlation func-
tions implies an infinite susceptibility above a critical
value of the coupling strength [8]. In the same approxi-
mation Odintsov [9] calculated the 7-V curves, showing
that they go like I = V“? (a is larger than 1 and depends
on the dissipation strength), with a vanishing threshold
voltage.

The purpose of this Letter is to present the results of a
Monte Carlo simulation of the system under considera-
tion. The main result of this Letter is the calculation of
the correlation functions in the strong-coupling region.
In this regime the predictions of the spin-wave analysis
turn out to be correct. Indeed, the correlator g(n) (see
below for the definition) is well described by the spin-
wave result n ~"; the exponent, however, is renormalized
with respect to that calculated in Ref. [8], and only far in
the strong-coupling region is it inversely proportional to
the coupling constant. The calculated values of 1 imply
that this region is characterized by an infinite susceptibil-
ity. Therefore, in the large-dissipation limit, our simula-
tions confirm the 7-V characteristics of Ref. [9]. In the
weak-coupling region the correlations will decay asymp-
totically like the interaction (n=2), the I-V are those of
Ref. [4], and the susceptibility is finite. This implies that
a phase transition takes place in the system: For a finite
value of the dissipation strength the threshold voltage for
the Coulomb blockade vanishes.

Ben-Jacob, Mottola, and Schon [10] showed that the
partition function of a mesoscopic normal-metal junction
can be expressed as a path integral over a phase field
¢(7). The Euclidean effective action reads (in units
h=1)

1)

where Ec =e2/2C is the charging energy (C being the geometric capacitance of the junction), and the phase ¢(7) is re-
lated to the voltage difference across the junction by the relation d¢/dt =eV. The dissipative kernel is defined as
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the nonlinear cosine form of the dissipative term being re-
lated to the discrete charge transfer between the elec-
trodes. The dissipation strength is the dimensionless tun-
neling conductance a defined as

1 _Ro 066k h

=i R, 2, T=2ko. ()

We will refer to the infinite-susceptibility phase as the
p-ordered one. Since ¢ is canonically conjugate to the
charge on the electrodes, order in ¥ means large quantum
fluctuations of the charge, i.e., a disordered charge state.
In the discretized-time version of the action the charging
energy introduces a nearest-neighbor interaction in time
so it is irrelevant as far as the critical properties are
concerned (we will neglect it from now on; see Refs.
[11,12]). The quasiparticle damping introduces a long-
range correlation in time and therefore we are left with
the analysis of the following effective action:

Slel =Z’a(n —n')cosle, —¢pl, 4)
n.n
where the discretized-time version of the kernel is
a(n) =a(x/N)?*/sin*(zn/N); N is the number of lattice
points in the time direction. The action at 7=0 is then
equivalent to the Hamiltonian of the one-dimensional
classical XY model with 1/n? interaction.

The Monte Carlo simulation was performed following
the standard Metropolis algorithm. The ensemble aver-
ages were calculated over 100000 passes after 5000
thermalization steps in the strong-coupling region and
250000 steps in the critical region. Many independent
runs, both heating and cooling, were performed and no
hysteresis was detected. Starting from the strong-
dissipation limit, the initial configuration with aligned
phases was chosen. In our simulations we studied the
phase-phase correlation function, the energy, and the
specific heat; the last two quantities, although not very
important for the metallic junction in itself, can help in
the understanding of the dissipative phase transition. The
largest lattice we considered was NV =100 [13].

We start from the study of the phase-phase correlator
defined as

gn—n")=(cosle, —¢,1). (5)

In the spin-wave approximation it is straightforward to
evaluate the correlator, with the result

g(n)=exp[——”2—aV(n)]zn_"sw, 6)

noting that the function V(n), defined as
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is = (1/4n)In(n) for large separation (yielding nsw
=1/27a).
In Figs. 1 and 2 we present our results for the correla-
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FIG. 1. The phase-phase correlation function plotted against
the function V(n) (which is essentially logarithmic but takes
into account the periodic boundary conditions used in the simu-
lations) in the strong-coupling region. The straight lines
confirm that the correlations decay algebraically and therefore
the system has quasi-long-range order.

tion function; g(n) is plotted against the function V' (n) in
order to minimize the effects of the boundary conditions
[14,15] (in the figures the error bars are of the same or-
der as the symbol sizes). In the strong-coupling region
(Fig. 1) the straight lines point out that the system corre-
lations decay following the behavior of Eq. (6). The
value of the dissipation at which the system deviates from
the spin-wave behavior is at a ~1=0.71; we can therefore
bracket the critical resistance from below and obtain a
value of R, =0.47 kQ. In this region the /-V curves
based on this algebraic law of the correlators do not ex-
hibit the Coulomb blockade.

In Fig. 2 we show the phase-phase correlation in the
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FIG. 2. The same as in Fig. 1 but in the critical region. The
correlator calculated at @ ~'=0.81 starts bending downwards,

showing a clear deviation from the spin-wave behavior.
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FIG. 3. The exponent n plotted against the dissipation
strength; in the strong-coupling region the behavior is linear, as
predicted by the spin-wave analysis (dashed line). We compare
the results of the numerical simulation with the calculation of
the exponent in the SCHA (continuous line), obtaining a good
agreement. Near the critical region n deviates from the linear
trend as in the analogous case of the 2D XY model with short-
range interaction.

transition region. The g(n) calculated at 1/a=0.81 devi-
ates from the law of Eq. (6). In this region we also
checked larger lattices (IV=250), with the same out-
comes. From the study of the specific heat and the ener-
gy per site the upper bound for the critical value of the
resistance can be inferred. The energy per site versus the
coupling constant has an inflection point which (roughly)
separates the weak- and the strong-coupling regions. The
specific heat, calculated from the fluctuation-dissipation
theorem, is peaked at a value of a = 0.91 (the curves be-
ing independent of the lattice dimensions) [16]. Our esti-
mate for the critical resistance is therefore R, =~0.53
+0.06 k.

It is interesting to analyze also the behavior of the ex-
ponent n as a function of the dissipation (see Fig. 3).
When the correlation functions follow the spin-wave-like
functional behavior (i.e., for & 7' <0.71) the experimen-
tal n is proportional to the slope of the curves in Fig. 1.
In Fig. 3 we also report nsw and the exponent calculated
in the self-consistent harmonic approximation (SCHA)
[16]. The latter also shows a good quantitative agree-
ment with the Monte Carlo data (in the SCHA the criti-
cal threshold is @ == 1). The linear behavior of 1 vs a ™'
typical of the bare spin-wave analysis is recovered up to
a ~'=0.4. The topological excitations present in the sys-
tem, although irrelevant in a renormalization-group pro-
cedure, lead to the renormalization of the spin-wave
stiffness. When approaching the critical region the ex-
ponent substantially deviates from the linear behavior.
This last result is very similar to what happens in the
KTB transition. The exponent 7, according to the scaling
relations for the 2D Coulomb gas, is related to the inverse

of the helicity modulus of the system [17]. However, in
this case, in absence of a theory, we cannot employ the
same relation.

Finally, we want to discuss a possible connection with
the experimental results. In the 7 =0 /-V characteristics
the phase transition is related to the vanishing of the
threshold voltage for the Coulomb blockade at a finite
value of the dissipation strength (according to our calcu-
lations acrj is of the order of 0.8). On the other hand,
some conclusions can also be drawn for the conductance
o(T). Brown and Simanek [18] found that the junction
changes its behavior from Ohmic to activated depending
on the nominal tunneling resistance; the experiments car-
ried on by the Delft group [19] showed a reasonably good
agreement with the theory. From the experimental re-
sults it seems that the resistance tends to saturate at low
temperatures for strong dissipation; in the opposite limit
the resistance diverges strongly when 7 goes to zero.
From Ref. [18] we know that (T’ is an integral of the
phase correlator studied in this work; therefore a different
temperature dependence is expected in the various re-
gimes.

After the submission of this paper we became aware of
a preprint by W. Zwerger where the same problem was
studied.
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