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Surface Interactions and Applied-Field EH'ects in Cholesteric Helicoidal and Blue Phases
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The electric-field dependence of the correlation region induced by a surface potential in cholesteric

liquid-crystal phases is considered theoretically. Based upon arguments given for the helicoidal and cu-

bic blue phases I and II, it is argued that recent experimental results on blue phase III rule out a cubic

or icosahedral structure for this state but are consistent with one composed of cylindrical elements, in

each of which the order is characterized by a curling or double-twist configuration. In the bulk, these

Aexible cylinders interlace and form a three-dimensional mesh. Near a boundary, however, they lie pref-

erentially in the bounding plane as a consequence of the surface potential.

PACS numbers: 61.30.6d, 64.70.Md

The eAect of surface interactions on bulk liquid-crystalline ordering has been of interest for many years. Even in the
simplest disordered nematic systems, a surface potential induces local ordering and can even lead to strong orientational
ordering over distances substantially greater than the coherence length [1,2]. Here we consider the combined effect of a
surface interaction and an applied electric field on the ordering of cho!esteric liquid-crystal phases. The implications of
these results, particularly for blue phase III (BP III, also known as the cholesteric fog phase [3]),are also discussed.

We begin with a system characterized by a pitch sufficiently long that there exists no intermediate BP between the
disordered and cholesteric helicoidal phases [4]. In the absence of an external field, the latter is described exactly by the
tensor order parameter [4,5]

—
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Here ( is a normalized [4,5] coordinate in the direction of the wave vector of (reduced) magnitude tc, pp and p2 are am-

plitudes to be determined by free-energy minimization, and c.c. denotes complex conjugate. For the usual bulk hel-

icoidal phase, po and p2 are constants; here we introduce a coordinate dependence as we shall consider ordering in the
presence of a bounding plane, /=0.

In an external field, Eq. (I) is no longer exact; however, for a "weak field" [which, as we shall discuss later, can in

fact be as much as (50-60)% of the threshold field required [6] for a cholesteric-nematic field-induced phase transition],
it is an excellent approximation [7]. Of course, pp and pi are now functions of the applied field amplitude as well as g.

We consider a system wherein (a) the liquid crystal is confined to the half-space (& 0, (b) the dielectric anisotropy is

positive, and (c) a weak electric field E is applied normal to (.
In this case, the bulk free energy per unit area of the helicoidal cholesteric phase described by Eq. (1), in suitably nor-

malized units [4,5], becomes
fO

fb =„dg[—, [(t —
K )@2+tpp+ (pi) + (1+ —,

' p)(pp) '] —@pe' &3p2e'—costc(+ (pp —3ppp2)+ (pp+It2 ) '] .

Here t is a reduced temperature parameter, e is proportional to E, p is a ratio of elastic constants, and a prime denotes
differentiation with respect to (.

For e =0, the system described by Eq. (2) exhibits a bulk ordered helicoidal phase (i.e., one in which pp and p2 are (
independent) for [5] t ( t„(tc). As we are interested in surface-induced ordering, we assume t & t, . Then pp, p2 0 as
g~ oo

We now supplement fb with a surface term which models the torques pinning the cholesteric order parameter in a
given direction at the surface. Specifically [2,8],

f, = —(pp+ J3p2) v6(g),

where v is the magnitude of the surface pinning torque in our reduced units.
Minimizing f=fb+f, with respect to pp and p2 gives

—(1+ —', p) pp'+ tpp —2e +6po 6p2+ 8(go+ pBpp =4v6(g),

—pz'+ (t —a. )p2 —2J3e costcg —12pplt~+8(No+02)P2 =4~&v~(()

(3)

(4)
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Consider now the so-called [2] "weak state, " in which
the magnitude of the order at the boundary is small. We
set po=PO+oe and approximate Eqs. (4) by

—(1+ —, p)PO+ (t+12oe )Po+ (to —2)e

=4ve(g), (sa)
—p2'+(t —rc )pz —243e cosxg —12popq

443vB(g) . (51)

The solution of Eq. (5a) is o =2/r and

2e 2Y

[(t+24e'/t)(I +2p/3)] ' '
r ' ]/2
r+24e'/r
1+2p/3

Substituting Eq. (6a) into Eq. (5b), the solution for pq, to
O(v), is

x exp

p2= exp[ —(r —K' 24e'/i) 'i'—g]
2JXv

(t —ic —24e /t)'

+ 2&3e cosa/
r —24e '/r

(6b)

hl =I(e) —I(0)—e— (8a)

That is, the intensity of the Bragg reAection increases
with the square of the field amplitude. Similarly, since
the Lorentzian linewidth is proportional to the inverse of

Comparing Eqs. (6a) and (6b), we see that the two am-
plitudes in the cholesteric order parameter are effected
diA'erently by the field. The |c-independent amplitude, po,
behaves essentially like the analogous quantity in a
nematic system —to lowest order, it is shifted by the ap-
plied field and has a nonzero bulk value. Also, there is a
decrease in its correlation length, which becomes (in re-
duced units) [(1+—,

' p)/(t+24e /t)] 'i .
For p2, on the other hand, there is an increase in the

correlation length, together with an increase in the sur-
face amplitude. (The latter is a consequence of our
choice of f„which is appropriate when the bulk phase is
disordered [2]. For an ordered bulk phase, it is the mag-
nitude of the order parameter which is e independent at
/=0. ) There is also a term proportional to cos(ir(),
which describes a distortion of the helix. The latter
would not appear for the case of negative dielectric an-
isotropy, where the field is applied parallel to g.

From Eq. (6b), it follows that the Bragg reIIection with
scattering wave vector x (which comes from the periodic
part of p;1), has a Lorentzian line shape and that its peak
intensity I is proportional to

2I— (7)
(r —x-2 —24e /r )

Thus

the correlation length, we have

6'X(e) =8k(0)[1 —24e /r(r —x )] 'i .

As noted above, Eqs. (7) and (8) are also valid for nega
tive dielectric anisotropy materials where the field is ap-
plied along g (one need only replace the numerical factor
of 24 by 48).

For the "strong state, " where the order-parameter am-
plitude at /=0 is not longer small [2] (but, again, there is
no bulk ordering), the result is the same; in a weak field,
the Bragg-peak-intensity increase is proportional to the
square of the field amplitude. The line shape, however, is
no longer Lorentzian.

Two key factors lead to the quadratic field dependence
of the Bragg intensity for the helicoidal structure. One is
the existence of a spatially uniform po component in the
order parameter characterizing the zero-field bulk hel-
icoidal phase as only po couples directly to the field. The
Bragg-intensity change then occurs via the cubic term in

the bulk free energy, pop2, which is the lowest-order cou-
pling between the spatially uniform and periodic com-
ponents of the order parameter describing the helicoidal
phase.

To emphasize the importance of a zero-field po com-
ponent for obtaining a quadratic field dependence of the
Bragg intensity, consider a similar calculation [9] carried
out for bulk BP I and BP II. Because of their cubic e =0
structures, there is no pp component in their order param-
eters. The latter is instead induced by the field (via a dis-
tortion of the cubic unit cell). This induced po is itself
proportional to e and the low-field Bragg-peak intensity
is proportional [9] to e .

Consider, however, an ordered BP I or BP II region ex-
isting only in the vicinity of a bounding surface. This is
possible [10] and BP I and BP II regions have been nu-
cleated at boundaries [11,12]. Now, although neither BP
I nor BP II has a po component in its bulk order parame-
ter, such a component could appear (even at e =0) as a
spatial transient near the surface which decays to zero in

the bulk. Just as in the helicoidal case, this po component
would then asymptotically approach a bulk value propor-
tional to e in an applied field. However, the essen-
tial diA'erence between bulk helicoidal and BP struc-
tures —the former is uniaxial while the latter are cubic—means that the term pop2, which is symmetry forbid-
den in the latter, can itself appear in the free-energy den-
sity only as a consequence of the surface. We therefore
expect this term's coefficient to be proportional to the
strength v of the surface pinning. Then the change in the
p2 correlation length arising from this coupling goes as
ve, while that arising from the higher-order coupling
term, pop2, is proportional to e and independent of v.
Thus one expects a dominant e dependence for the
Bragg-line-peak-intensity enhancement of BP I or BP II
surface-induced ordering when the surface potential is
weak, just as occurs in the bulk. This is indeed what is
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1
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with Ip, Vp, and n adjustable parameters and V the volt-
age across the specimen. (Of course, V-e.) A best
least-squares fit was obtained for n=2. (c) The line-
width was similarly fitted by

N, =N, [1 —(V/V')" ] ' (9b)

with now H.p, Vp, and n' as adjustable parameters. A
best least-squares fit was found with n'=2 and Vp —Vp.

These results are consistent with the following:
(1) The broad zero-field reflection line observed in the

case of BP III is a surface efl'ect. This is also consistent
with the observations that, unlike BP I and BP II Bragg
peaks, that of BP III is not narrowed by annealing [14]

observed [11,12].
We now turn to BP III. While a range of theoretical

ideas and models have been put forward to characterize
this phase's structure, none have been confirmed experi-
mentally [3]. Recently, it has been observed [13],for the
case of negative-dielectric-anisotropy material, that an
electric field (applied along the normal to the bounding
surfaces of the sample) results in significant intensity
enhancement and linewidth narrowing of the very broad
reflection characteristically observed for this phase [14].
This does not occur in positive-dielectric-anisotropy ma-
terial [15].

We stress that even for the relatively strong applied
fields used in Ref. [13], the "weak-field" approach [i.e.,
Eq. (1)] remains valid. Direct calculation [16] for a
positive-anisotropy helicoidal phase shows that the ampli-
tude of the second harmonic is less than 6% of the pri-
mary one, even for fields as high as 4 V/pm. (The same
result is valid for negative-dielectric-anisotropy materials
if the spiral is prevented from rotating in the field. )

These experimental results are, of course, for a dif-
ferent problem from that analyzed here (i.e., they are ob-
tained with an ordered phase —BP III—in the bulk rath-
er than a disordered one. ) Nevertheless, the observed
field-induced enhancement and simultaneous narrowing
of an initially weak and broad Bragg reflection are exact-
ly the phenomena characteristic of surface-induced order-
ing [17]. Moreover, as regards structure, it appears that
bulk BP III has more in common with the disordered
phase than with the other ordered cholesteric ones. That
is, while bulk BP III is apparently strongly ordered local-
ly (much as in BP I or BP II), it does not have long-range
order [3].

Kitzerow, Crooker, and Heppke [18] have carried out a
detailed quantitative study of the field dependence of the
Bragg-peak intensity and linewidth in BP II I for
negative-anisotropy material. Their results were as fol-
lows: (a) The line shape was Lorentzian to within the ex-
perimental precision. (b) The peak intensity was fitted
by

and that the observed reflection is sensitive to tilting of
the specimen [18].

(2) The coupling between the liquid-crystal molecules
and the bounding surface is weak.

(3) Since Vo= Vo, the magnitude of the order paraine-
ter at the surface is essentially field independent. This
differs from the result found [see Eq. (6b)] for the hel-
icoidal phase where [see Eqs. (7) and (8b)] the value of
Vp was t~iee that of Vp. However, there is a significant
difl'erence between the two cases: For the zero-field hel-
icoidal phase p2 is induced at /=0 by the surface pinning
[2]; for BP III, it exists spontaneously. Thus pz(/=0) in
BP III, as in all ordered liquid-crystal phases, is essen-
tially field independent. This is particularly so when the
material has negative dielectric anisotropy and the field is
applied normal to the surface while the eigenvector of the
largest eigenvalue (the director axis in the uniaxial limit)
lies in this plane. It follows that I is no longer propor-
tional to (t —tc —246 /t) as in Eq. (7), but rather to
(t —x —24e /t) '. As Eq. (8b) is unchanged, we have
Vp= Vp. Thus Vp —Vp is indeed reasonable for the case
of a bulk-ordered BP III sample with a surface-aligned
layer. This alignment (which underlies for the Bragg
peak) decays exponentially with distance from the sur-
face.

(4) Since n=n'=2, the region near the bounding sur-
face (whose width is field dependent) gives a pop2 contri-
bution to the free energy. Further, since the experimen-
tal results are consistent with weak surface coupling, the
coefficient of this contribution must be v independent for
the same reasons given earlier when discussing BP I and
BP II. This rules out those models for bulk BP III which
lead to a surface region having, to a first approximation,
cubic or icosahedral symmetry.

A model which appears to be consistent with the exper-
irnental results [18] regards BP III as a three-dimensional
mesh of randomly oriented, interwoven cylindrical ele-
ments, in each of which the largest eigenvector of the or-
der parameter (which defines the director in the uniaxial
limit) is in a curling or double-twist configuration.
Hornreich, Kugler, and Shtrikman [19] have shown
rigorously that one such cylinder is indeed a minimum of
the bulk free-energy function; however, no analysis of a
possible nonperiodic state formed by a mesh of such elas-
tic cylinders has as yet been carried out. Suppose, howev-
er, that the BP III surface layer is composed of such
cylinders and that, due to pinning, these cylinders prefer-
entially lie with their axes in the surface plane. This
orientation is favored when the potential prefers homo-
geneous director orientation, as assumed for the nematic
[1,2] and (by us, here) helicoidal cholesteric phases.

Given a surface layer in which curled cylinders lie pref-
erentially in the bounding plane, there exists a repeat dis-
tance equal to the average spacing, taken normal to the
planes, between cylinder axes in adjoining layers. This
underlies the observed zero-field Bragg scattering line
which, due to the limited thickness of the surface layer, is
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necessarily both weak and broad.
When a field is applied normal to the surface, the pref-

erential ordering of cylindrical units parallel to the
bounding plane is strengthened for the case of negative-
anisotropy material [7(b)]. In other words, the surface
correlation length increases with field intensity and there
is a corresponding intensity growth and line narrowing of
the Bragg reflection. Since the tubes, individually, are
uniaxial, they do have a po component in their order pa-
rameter [19]. Further, the surface layer ordering induced
by the pinning is also at least uniaxial (the surface nor-
mal is always a unique direction —whether, in addition,
there is in-plane ordering depends upon the pinning po-
tential) and there is a popz contribution to the free-
energy density from this region. This, as we have shown
for the helicoidal phase, leads to an e dependence of the
correlation length. Moreover, since this pop2 term exists
due to the orientation of the cylindrical units and not to
their distortion, its coefficient is essentially v independent,
as required.

We conclude, therefore, that the data [18] are con-
sistent with a bulk BP III structure formed of interlaced,

randomly orientated elastic tubes, in each of which there
is a curling or double-twist configuration of the order pa-
rameter (i.e., a "cooked spaghetti" phase). Near a sur-
face, the pinning potential stiffens and orients these tubes

so that they lie preferentially in the bounding plane ("un-
cooked spaghetti"). The resulting Bragg scattering
would have the experimentally observed properties; that
from cubic or icosahedral structures would not.
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