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Line Shapes of Field-Induced Blue-Phase-III Selective Reflections
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We have measured the electric-field dependence of the reflectivity of the blue phase III (BP III) of
cholesteric liquid crystals when the dielectric anisotropy e (0. We propose a model which assumes that
the boundary aligns the sample to a depth L and in which L is increased by the applied field. The free
energy is proportional to E", where n depends on the structure of BP III. The data are fitted well by a
Lorentzian line shape, and the peak intensity and linewidth agree well with the theory for n =2.1. This
value is consistent with the double-twist model of BP III, but not with cubic and quasicrystal models,
since the energies of these latter structures depend on higher powers of E.

PACS numbers: 61.30.Eb, 61.30.Gd

Of the three blue phases found in chiral liquid crys-
tals —BP I, BP II, and BP II I—which have been ob-
served in the absence of electric or magnetic fields, only
BP I and BP II are well understood [1,2]. Both BP I and
BP II are cubic; the bright selective reflection colors they
exhibit are caused by Bragg scattering from regular crys-
tal planes. These are examples of condensed-matter
phases where frustration plays an important role: It
modifies but does not disrupt the long-range order by
creating a network of disclinations or regions in which the
order parameter vanishes [3].

BP III, on the other hand, appears amorphous and
reflects only a weak, broad band in the visible region, in-

dicating that its scattering structures are small and long-
range order is only poorly established. An elucidation of
the still-unknown BP III structure remains one of the
outstanding problems in liquid-crystal physics. Here
frustration may actually prevent long-range order by
creating a tangle of disclinations, while still allowing con-
siderable order on scales up to that of the chiral pitch [3].
Based on a variety of data —rotatory power [4], heat
capacity [5], and reflection spectra [6]—three "models"
of the BP III phase have been suggested [1 (a)]. These
are as follows: (A) the double twist model [7],-which
consists of a spaghettilike tangle of double-twist
cylinders; (B) cubic domain models -[4,8], in which small
cubic domains or correlation regions predominate; and
(C) the quasicrystal model [9], in which the structure is
characterized by reciprocal-lattice vectors derived from
the edges and vertices of an icosahedron. (There is also a
fourth model [10] in which BP III is not considered to be
a true thermodynamic phase. ) Only the quasicrystal
model has been analyzed in any detail.

To date, the testing of these models by experiment has
not been conclusive. In particular, higher spatial har-
monics expected for the cubic and quasicrystal models
have not been found [11]. Recent data showing the effect
of electric fields on the BP III reflectivity peak have, how-

ever, been intriguing, especially the observation that for

BP III with negative dielectric anisotropy the application
of an electric field causes the selective reflection peak to
increase by several orders of magnitude and narrow
dramatically [12,13]. Since, for reasons of symmetry, the
electric field affects different model structures in different
ways, it should be possible to obtain information on BP
III structure from such data.

%'e first present precise measurements of the spectrum
of the reflectivity in BP III samples to which electric
fields have been applied and show explicitly how the
linewidth and peak reflectivity depend on the field. We
then briefly discuss a calculation by Hornreich [14] of
surface- and field-induced ordering in the isotropic phase
of a cholesteric liquid crystal and use that calculation to
motivate a similar model for surface ordering in BP III.
In our model, the electric field appears as E", where n de-
pends on BP III structure. Data fits yield n =2. 1 ~0.1.
This result is inconsistent with both the cubic and quasi-
crystal models, for which n) 4. For the double-twist
model, however, the observed value of n is quite accept-
able.

Our measurements were performed on a mixture of
30.0 wt. % of the chiral compound S811 (Merck) and
70.0 wt. % of the nematic mixture EN18 (Chisso Corp. ),
which exhibits negative dielectric anisotropy. This mix-
ture has been discussed previously [14,15]. The liquid
crystal was confined between two electrically conducting
glass slides, the thickness of which was fixed by 12.7-pm
Mylar spacers. The sample temperature was controlled
to 3 mK by a modified Mettler hot stage. Observations
were made in reflection using crossed polarizers and a
Zeiss Universal microscope. To record the reflection
spectra, light from the camera tube was directed to a
Jarrel-Ash spectrometer (I-nm spectral resolution) and
then to a photomultiplier with photon-counting electron-
ics for high sensitivity.

Close to the clearing temperature, the sample shows
the phase sequence N*-BP I-BP II-BP III-BP III/
Iso-Iso. The transition temperatures were found to be
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about 0.2 K higher than those previously reported
[14,15], indicating a very small difl'erence in the mixing
concentrations. The measurements were carried out at
44.29 C, which is above the BP-II-BP-III transition but
below the BP III/Iso two-phase region. ac voltages at 1

kHz were applied to the sample; all reported voltages are
rms. Reflection spectra were recorded in steps of about 5
V from 0 to 64.8 V, and then in steps of 1-2 V to 90.4 V.
Raw spectra were corrected by first subtracting the back-
ground reflectivity It„(k) obtained from the isotropic
sample at 52.20'C, and then dividing by the lamp spec-
trum Il, ~(X,) obtained by measuring the geometrically
attenuated reflectivity of a mirror using parallel polariz-
ers.

As found earlier [12,13], the peak intensity of the
reflected light increases and the linewidth decreases as
the field is increased. Between =74 and 76 V, BP III
coexists with the field-induced phase BPE, the structure
of which we have not identified, but which can be recog-
nized visually by a wavelength shift and higher peak in-
tensity. Above 76 V, BPE becomes absolutely stable with
respect to BP III.

The data are displayed in Fig. 1, which shows typical
reflected intensity spectra for applied voltages of 0, 60,
and 80 V. At 0 V, an important feature of the reflected
light is that it only appears when the sample surface is
perpendicular to the incident and reflected light beams.
If the sample is tilted, the reflection disappears, which in-
dicates that the sample is aligned by the surface such that
the reAecting planes are parallel to the surface. This
effect has been reported earlier [11]. At higher voltages,
the same situation obtains; here, however, the alignment
can be attributed to the field. Figure 2 shows the peak

height I and the linewidth AA, (full width at half max-
imum) derived from the spectra for the full range of volt-
ages. From visual observation of the sample, examination
of these figures, and the dependence of the peak wave-
length versus voltage (not shown), it is clear that BP III
behavior is represented by voltages below = 76 V.
Above this voltage the sample is in the BPE phase and
has entirely diAerent behavior.

Recently, Dmitrienko [16] has suggested that the sam-
ple walls may order the sample to a penetration depth Lo,
as has been observed previously by Yang, Crooker, and
Tanimoto [11],and that an electric field may enhance the
ordering and increase the penetration depth to L )Lo,
thereby giving rise to the backscattering intensities and
linewidths we observe. Hornreich [14] has, in fact, the-
oretically considered an analogous situation: the isotropic
phase of a cholesteric liquid crystal with positive dielec-
tric anisotropy confined to z )0, an aligning boundary at
z =0, and a field perpendicular to z. In his theory the or-
der parameter has two terms [1(c),17,18]—first, a term
with coefficient po(z) and a tensor corresponding to the
spherical harmonic Y2o(0, &); and second, a term with
coefficient p2(z) and the tensor Y22(t), &), which rotates
in screwlike fashion about the z axis. The relevant part
of the free-energy density has the form
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f= popo+&pp2+&o(dpo/dz) +&2(dp2/dz)

3popz poe v(po+ J&p2)&(z),

where the 8; and B; have temperature and chirality de-
pendences, e is a reduced electric field, and v is the
strength of an aligning torque which occurs only at z =0.
From this free energy, it can be shown that po(z) has a
spatially constant term proportional to e which, when
reinserted in (1), gives the pop2 cross term the form
pqe . The solution is then pq(z) Ix: vL exp( z/L), where-
the penetration depth L =Lo[1 —(V/Vo) ]'i and where
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FIG. l. Reflected intensity vs wavelength for three electric
fields. Solid lines are best fits with Lorentzian line shapes. For
0 and 60 V the sample is in the BP III phase; at 80 V it is in the
BPE phase.

10—8—
&P'4 44

I I I I I I I II I 0
0 20 40 60 80 100

v (v)
FIG. 2. Peak rellected intensity and linewidth (FWHM) vs

sample voltage. Solid lines are fits by Eqs. (5) and (6) in the
BP III region.
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f= —, [Wg'+ a(dg/dz)' gg'E "] . — (2)

This free energy contains the p2-dependent terms of (1)
after minimization with respect to pp, except that 2, 8,
and g are now assumed to be constant and the exponent
of E is allowed to be a free parameter which will be
determined by fitting the data. Rather than the boundary
condition used by Hornreich, we take Q =Qp fixed at the
boundary; this choice, in fact, gives a better fit to the
peak intensity data.

Minimizing (2), we find that the sample is indeed or-
dered near the surface, with

Q(z) =Qpexp( z/L) . — (3)

Defining Lp =48/A and letting E be produced by a volt-

age V ~ E across the sample, the penetration depth L is

L =L [1 —(V/V, )"] '" (4)

where V/Vp=(g/A) ' "E. At V=O the penetration depth
is Lo, as V is increased the penetration depth increases to
L(V) and finally becomes infinite at Vp.

Light incident on the sample along the z axis will now
be backscattered from the periodic modulation near the
surface. The scattered electric field E(q) is proportional
to the Fourier transform of this modulation, and the scat-
tered intensity is I(q) ~E(q)E*(q). In the limit of nar-
row linewidth the resulting intensity has a Lorentzian line
shape in the wavelength A, ; actually, we have fitted our
data both with and without the Lorentzian approximation
and we find that within our experimental precision, the
diff'erence is not significant. The peak intensity I is pro-
portional to L; from (4) we have

I= Ip
(5)

1
—(V/V, )"

The linewidth (FWHM) is hX=kp/xL. Again from (4)

Lp depends on temperature and chirality. Hornreich [14]
notes that this result is also valid for negative dielectric
material with an electric field along the z axis, and then
discusses the case where an electric field is applied to a
cubic structure [18]; there the field coupling term will

have the form pqe" with n =4. The icosahedral structure
has not been worked out in detail but, from symmetry
[19],n )4.

Although the Hornreich theory is not a model for BP
III structure, which is unknown, it provides the motiva-
tion for a simple model of BP III which explains our data.
In analogy to p2(z) in the isotropic phase, let Q(z) be
the scalar amplitude of that Fourier component of BP III
order to which the light in our backscattering experiment
responds. Q does not describe the complete BP III order,
for which an a priori knowledge of BP III structure is re-
quired, but for helicoidal or cubic models Q is proportion-
al to p2 of the Hornreich theory. In the spirit of the
Hornreich theory, we then propose a free-energy density
of the form

~Z =~co[I —(V/V, )"]'"

The theory has therefore yielded three expressions
which can be experimentally tested. (A) The reIIectivity
has a Lorentzian line shape. This is a result of omitting
higher-order terms in Q and is also a feature of Horn-
reich's weak-field analysis. (B) The peak intensities vary
with applied voltage according to (5). This form depends
on a fixed value of Q at the boundary; with the boundary
condition of Hornreich the denominator would be
squared. (C) The linewidth varies with applied voltage
according to (6). This expression is also obtained by
Horn reich.

In order to test the model, the intensity data of Fig. 2
was fitted by Eq. (5), with /p, Vp, and n as adjustable pa-
rameters. The result is the solid line superimposed on the
intensity data in Fig. 2, with lp = (7.9 ~ 0.1)x 10, Vp
=76.4+ O. l V, and n =2.10~0.03. The linewidth data
of Fig. 2 were fitted by (6), where Alp, Vp, and n were
adjustable. The solid line on the linewidth data was ob-
tained with hkp=92 ~ 1 nm, Vp =75.1+ 0.5 V, and
n=2. 1+0.1. Both fits are in good agreement with the
data as well as with each other.

The fits of the reflection spectra by Lorentzian line
shapes, the agreement of the peak intensity and linewidth
with Eqs. (5) and (6), and the agreement of the parame-
ters V and n with each other for both fits appear to justify
the model given by Eq. (2). The zero-field penetration
depth Lp=kp/nnhkp=512 nm. Taking the pitch to be
P=lp/n = 313 nm (here n = 1.5 is the refractive index
and A,p= 470 nm), we find that L/P=1. 6 at 0 V and
diverges at 75 V. Note also that sample thickness is not
an important factor in the fit. Using the above numbers
and Eq. (4), L remains less than half the sample thick-
ness of 12.7 pm until V & 0.997Vp.

Finally, our most important result is that n = 2, which
rules out icosahedral or cubic structure for BP III. It
thus appears that BP III is macroscopically amorphous
while retaining considerable order over a correlated re-
gion with a length scale of the order of a pitch. These
correlated regions clearly couple to electric fields as E,
at least near the surface; hence they must possess simple
helicoidal or double-twist structure.
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