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We compare two previously introduced theoretical definitions of the Z mass and show that one of
them, frequently used, is gauge dependent in O(a3) in a wide class of gauges and in O(al) in the com-
plementary class. We then discuss a slightly modified version that circumvents these problems, is en-
dowed with desirable theoretical properties, and can be identified with the mass measured at the CERN
e+e collider LEP. The simple formulation that emerges is applied to illustrate properties of the physi-
cal amplitude, related to gauge invariance, and the role played by the two definitions of mass.

PACS numbers: 14.80.Er, 11.10.6h, 11.15.Bt

ml =mp+Reh(ml ), (2)

i.e., the zero of the real part of the denominator in Eq.
(1). It corresponds to the usual field-theoretic treatment
of stable particles.

An alternative, more fundamental definition, involves
the complex-valued position of the pole in Eq. (1).
Calling s =q, and s the pole position, we have

s =mp'+A(s) . (3)

Over the last two years, the Z mass has become one of
the most precisely measured and important parameters in
electroweak physics. Indeed, in conjunction with the Fer-
mi constant G„and the fine-structure constant a, mz0
plays a crucial role in the verification of the standard
model at the level of its quantum corrections, in the
derivation of constraints on m, and mH, and in searches
for new physics. A recent value, mzo=91. 174+ 0.021
GeV [1],bears witness to the accuracy reached. What is
then this fundamental parameter, the Z mass, from a
theorist's perspective? That the issue is not trivial follows
from the inherent ambiguities placed upon the mass of an
unstable particle by the uncertainty principle [2]. And
yet, in order to correlate diff'erent observables at the level
of the quantum corrections, the theorist requires a precise
theoretical concept. The riddle becomes altogether more
acute when one recalls that the width of Z is about 2.5
GeV, more than 100 times larger than the mass uncer-
tainty.

We begin our analysis by comparing two previously in-
troduced theoretical definitions of the Z mass. In order
to discuss this concept one considers the unrenormalized
propagator

A„,(q) = —ig„,/[q —mp —A(q )]+ .

where the ellipses stand for q„q, terms, mo is the bare
squared mass, and A(q ) represents the unrenormalized
self-energy [it includes yZ mixing effects that start in

O(a ) and tadpole and tadpole counterterms that con-
tribute only at q =0].

The most commonly used definition m] is

In terms of s one defines the inass m2 and the width I 2 by

S =m2 —lm2I 2.2 (4)

In the context of Z physics the definition of Eqs. (3)
and (4) was proposed some time ago by Consoli and the
present author [3]. The idea of using Eq. (3) has been
rediscovered recently by Willenbrock and Valencia [4],
who employ a parametrization different from Eq. (4).
An important feature of this "pole definition, " stressed in
Ref. [4], is that it is a basic property of the S matrix and
one therefore expects it to be intrinsically gauge invari-
ant.

In order to compare ml and m2, we note that I 2

=O(a) (a represents here a generic gauge coupling), ex-
pand Eq. (3) up to terms of O(a ),

s = mp+A(m2) —A'(m2 )im2I 2

—W "(m,')m,'r,'/2+

and separate real and imaginary parts,

m2 = mp+Re&(mz)+1m''(m2)m21 z

—Rex "(m,')m,'r,'/2+

m21 2
= ImA (m2 ) +ReA (m2 )m21 2

+ ImA "(m2 )m2 I 2/2+. . .
,

(5)

(7)

+ 1m&2(m2 )m2I 2

—ReA "(mq )m221 22/2+

M =m2 ImA I (m2)m21 2.

(8)

(9)

Subtracting Eq. (8) from Eq. (2) and using the mean-
value theorem to estimate Red (m 1 ) —ReA (M ), one

where henceforth the ellipses represent terms of O(a )
and higher. Next, we write ImA'(m2 ) =1m' I (m2 )
+ImA2(m2), where the subscripts I and 2 denote one-
and two-loop contributions, respectively, and express Eq.
(6) as

M =mp+ReA(M )+ReA'(m2)ImAI(m2)m, r,
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finds

4 = —ImAl (m2 )m2rz —ReA'(m2 )ImA i (m2 )m2rz

+ReA "(m 2 )m l r2/2+

5—=m i
—M =m

i
—m2+ImA i (mq)mzr2.

(i0)

The last term in Eq. (11) is of O(a ) and gauge invar-
iant in the class of gauges C

1 defined by) (4cos Oii ) ', but is gauge dependent in the comple-
mentary set C 2 (here we use a convention where g ~ ~,
(=1, and (=0 correspond to the unitary, 't Hooft-
Feynman, and Landau gauges, respectively). This can be
seen as follows: For values of g such that 4m~() m2,
the bosonic contributions to A i (s) cannot develop an
imaginary part in the neighborhood of s =mz because the
unphysical bosonic excitations are too massive. There-
fore, at s = m2, ImA i (s) and ImA i (s) involve only one-
loop fermionic contributions which are gauge invariant.
In 8z this is not the case: Although ImA|(m2), in con-
formity with Eq. (7), is gauge invariant, in the neighbor-
hood of s=mq, the amplitude ImA i(s) contains bosonic
contributions and ImAi(m2) is gauge dependent. As the
terms on the right-hand side (rhs) of Eq. (10) are of
O(a ), they cannot compensate for this difficulty and we

conclude that in C 2, m ) and m 2 diA'er by gauge-
dependent terms of O(a ). Although C2 contains the
Landau gauge, most calculations in electroweak physics
are carried out in the 't Hooft-Feynman and unitary
gauges, so that we now turn our attention to the C) class.
In this case the last term in Eq. (11) does not present a
problem, but the three O(a ) contributions on the rhs of
Eq. (10) are gauge dependent. A possible caveat is that
their gauge dependences may cancel. We now show that
this is not the case. We note that in C) and in the vicini-

ty of s =m2, ImAl(s) is related to the one-loop vertex
corrections to I (s) (the width of a Z particle of squared
mass s). These vertex corrections contain gauge-
dependent parts proportional to the Z and y fermionic
currents, Jz and J~. The contributions of the former
are proportional to the zeroth-order width I (s)
= —ImA|(s)/mq, so that altogether we can write

ImA2(s) =2ImA i(s)BV(s) —mq(~r) „,+ (g.i.), (12)

where BV(s) represents the one-loop gauge-dependent
vertex corrections multiplying Jz in the decay amplitude,
—m2(BI )„z are gauge-dependent contributions bilinear
in matrix elements of J, and Jz, and (g.i.) denotes
gauge-independent terms. Including the contribution of
the first term of Eq. (12), the rhs of Eq. (10) becomes

m 2r2 ImA i (m 2 ) [2~V(m2 ) + ReA'(my ) ]

+m2r2[28V'(m2)+ReA (m2)/2]+. . .

The first term is gauge invariant since the combination
28V(mz)+ReA'(mz) is precisely what appears in the
O(a) correction to the width. However, the second term,

IlllA ] (m2 )m2r2 [[ImA i (m2 )]f+ [ImA i (m2 )]b]mar&,

where the subscripts f and b denote the fermionic and bo-
sonic parts. We write again the first term as —I 2 and,
combining Eq. (10) and Eq. (11),obtain in C z

m
1 =m2+r2 —[ImA|(m2 )]bm21 2+O(a ) . (14)

As emphasized before, the third term on the rhs is of
O(a ) and gauge dependent. Because it only arises in the
restricted class (( (4cos Oii ) ', far away from the uni-
tary gauge, it is expected to be bounded in magnitude and
small.

In order to obtain a gauge-invariant definition, we must
somehow relax Eq. (2). A simple possibility, suggested
by Eq. (13), is to replace Eq. (2) by

m) =—m2+I2,2= 2 2 (is)

which henceforth is regarded as exact. We note that m)
is larger than m2 by =34 MeV, i.e., 1.6 times the
current experimental error. In terms of this modified m),
Eq. (2) is altered by terms of O(a ) in C i and O(a ) in

This means that the mass-renormalization counter-
term Bmi =mi —mo is not given exactly by ReA(mi ),
but it is corrected by gauge-dependent contributions
starting at those orders. We also introduce a slightly
modified width,

rI™Ir2/m2 .

With this definition, regarded as exact, m) I ) satisfies an
expression analogous to Eq. (7) with mq mi.

In order to understand more clearly the meaning of m)
and I ) and the connection with physics observed at the
CERN e+e collider LEP, one combines Eq. (1) and

involving 28V'(m2)+ReA "(m2)/2, is not. This can be
verified mathematically, but can also be understood by a
physical argument. As we will see later, when one con-
siders the O(a) corrections to a four-fermion process
such as e+e ff at s =m2, there is a "nonresonant
part" that includes precisely the terms above plus addi-
tional gauge-dependent contributions from the box dia-
grams. The gauge dependences cancel in the physical
amplitude, but not in 26V'(m2)+ReA "(mq)/2, since it
represents only part of the nonresonant contribution. We
conclude that the rhs of Eq. (10) is gauge dependent.
Furthermore, if in ImAi(s) we neglect small gauge-
invariant corrections of O(amb/mz) (scaling approxima-
tion), we can write in Eq. (11)

ImA1(m2 )m2r2 ImA i (mBr2/m2 = r2+0(a ) .

In summary, in C i Eq. (10) becomes

mi =m2+I 2+0(a )

where some of the terms of O(a ) are gauge dependent.
Returning to C 2 we can separate in Eq. (11)
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Eq. (3), i.e.,

s —mp —A(s) =s —s —[A(s) —A(s)], (i7)

and, following Ref. [3], separates the propagator into
"resonant" and "nonresonant" parts,

1

s —mp' —A (s)
I+ (s s)f—(s)+

(s —s) [1 —A'(s)]

f(s) = A (s) —A (s ) —A '(s ) (s —s )
(s —s) '[i —A'(s) ]

(i9)

If we restrict ourselves for simplicity to P~ and if in the
second factor we neglect terms of O(a') in the real parts
and O(a ) in some imaginary parts, Eq. (20) simplifies to

pole = (s —m ~ +isI ~/m ~ ) ' [1 —ReA'(m1 ) + . . ]

(2i)

Equation (21) exhibits the characteristic Breit-Wigner
form, with s-dependent width and real field renormaliza-
tion, employed in current analyses of LEP physics. Thus,
m1 and I

~ can be identified with the corresponding quan-
tities measured in those experiments. Equation (21) con-
forms also with one's intuitive feeling of how the pole
term should behave: a Breit-Wigner form near resonance
with a much smaller imaginary part for s«m]. The
latter property is of course present in the corresponding
pole term in Eq. (18), but there the cancellation of imagi-
nary parts at low s is less explicit. Indeed, it is easy to see
starting with Eq. (1), that the mass parameter that natu-
rally appears in calculations at s & 0 or at s «m~, where
the O(a) imaginary parts are very small, is m~ rather
than m2. Finally, the modified parameter m~ conforms
with the traditional renormalization condition of Eq. (2)
through terms of O(a ) (C1) and O(a) (C2). Thus, al-
though we regard the complex-pole definition [Eqs. (3)
and (4)] as the basic one, we see that Eqs. (15) and (16)
provide an alternative description in terms of the parame-
ters m~ and I ~, endowed with desirable theoretical prop-
erties.

The transformations of Eqs. (15) and (16) have been
extensively used before [5], but in a different theoretical

where the ellipses here denote higher powers of
(s s)f(s)—. The function f(s) is regular as s~ s so that
terms involving f(s) represent nonresonant contributions.
Equations (17) and (18) also reveal that in a perturbative
expansion based on s, A(s) and [1 —A (s)] ', complex-
valued quantities, would play the role of "mass counter-
term" and "field renormalization constant, " respectively.
Multiplying and dividing by 1+i'I i/m2 and recalling Eqs.
(15) and (16), the pole term in Eq. (18) can be written in

an equivalent form,

pole=(s —m('+isr)/m)) '[1 —A'(s)] '(I+ir)/m() .

(20)

context. The traditional approach has been to start with

Eq. (2), derive a pole term of the form of Eq. (21), and

apply the inverse transformations in order to obtain a
description in terms of an s-independent width, as this is
convenient for practical purposes. In some sense our ap-
proach has been the opposite. After demonstrating the
theoretical difficulties associated with Eq. (2) in high or-
ders of perturbation theory, we have proposed to start
with Eqs. (3) and (4) as the basic definition and used
Eqs. (15) and (16) to introduce an alternative description
in terms of m ~ and I ~.

The decomposition into pole terms and nonresonating
parts can be used to discuss properties of the physical am-
plitude related to gauge invariance. For example, consid-
er a four-fermion process and call V~(s) and V2(s) the
vertex parts multiplying (I'~ J„~l) and (2'~ J„~2), respec-
tively. Writing V;(s) = V;(s)+(s —s)g;(s) (i =1,2),
one notices that the residue of the pole is given by
V) (s )V2(s ) [1 Az (s ) l and must be gauge invariant.
Expanding the residue in powers of a one gains informa-
tion about gauge-invariant combinations of vertex parts,
self-energies, and their derivatives to various orders in a.
One can also use this decomposition to demonstrate ex-
plicitly the gauge invariance of the O(a) corrections for
arbitrary values of s, which is complicated to soine extent
by the resummation implied by the resonance [6]. One
notices that to this order the residue of the pole is
V~(m~ )+ V2(m~ )+Az(m~ ). The nonresonant contribu-
tions are given by g~(s)+g2(s)+f(s)+b(s, t), where
b(s, t) symbolically represents the box diagrams (t is a
second Mandelstam variable); as these functions are al-
ready of O(a) and regular as s s, we can further ap-
proximate s=m~. We have indeed verified that these
two sets of contributions are gauge independent to O(a)
for all values of s.

Finally, we would like to point out that the considera-
tions of this paper can be extended in a natural manner to
other unstable particles.

After completing this work, the author's attention has
been called to a recent preprint by Stuart [7], where the
complex pole definition is also discussed. Some of
Stuart's conclusions are equivalent to the observations
made in the penultimate paragraph of the present paper.
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useful communications. He is also grateful to M. Conso-
li, W. Hollik, M. Bohm, J. Lowenstein, W. J. Marciano,
R. Stuart, S. Willenbrock, and S. Fanchiotti for helpful
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