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We propose a pair of new quasilocal constructions for the four-momentum and mass of the gravita-
tional and matter fields within generic two-surfaces. We show that the momenta are future pointing
when the dominant energy condition is satisfied on a spanning three-surface and the two-surface is suit-
ably convex. The new definition gives zero in Oat space and the correct results in linearized theory, at
spacelike infinity and for round spheres. At null infinity at least one definition gives the Bondi mass.
These definitions can be embedded in definitions of angular momentum.

PACS numbers: 04.20.Cv

The purpose of this Letter is to present a pair of
definitions of the momentum and mass of the gravitation-
al and matter fields contained within generic two-spheres
in the context of general relativity. The existence and
meaning of such definitions has always been contentious—translation symmetries are usually required for the
definition of energy-momentum, whereas such sym-
metries do not exist in general curved space-times. Nev-
ertheless, there has been much interest in the possibility
that such definitions could have applications to the inter-
pretation of numerical and exact solutions of Einstein's
field equations, provide useful techniques for use by those
interested in analytic results for general space-times, and
form a significant piece of general theory. We resolve the
difficulty by observing that one only needs to define
translations at the bounding two-surface S' of the region
whose mass, etc. , one is interested in computing. This
turns out to be feasible. It is perhaps worth emphasizing
that a crucial property of such a definition is that of posi-
tivity when the space-time satisfies the dominant energy
condition.

We first motivate and state the new definitions. We
then show that the definitions give the correct answer in

ffat-space linearized theory and at spacelike infinity. We
go on to prove a positivity theorem. Finally, we survey
the results of calculations of the inass definition for large
spheres near null infinity, for small spheres, and for round
spheres.

The new definitions are a substantial improvement on
previous ones. The definition given by Hawking [1] fails
to give zero for general two-surfaces in Aat space-time.
The definition of Ludvigsen and Vickers [2] is not
genuinely quasilocal since it requires that the two-surface
be attached to null infinity (or else to a point) by a null

hypersurface. A quasilocal formulation should only de-
pend on the intrinsic and extrinsic geometry of the two-
surface in question. The definition of Bartnik [3] is, by
definition, optimal with respect to its defining criterion
but is not usable in practice. Penrose's definition [4] is
the most serious contender, but as yet gives no definitive
way of calculating the mass within a general two-surface
and there is no definition of energy momentum in general.
Furthermore, a positivity theorem is not yet available

even where the inass definition is unambiguous (see Tod
[5]).

The positivity theorem and the success of the new
definitions in other regimes means that they are major
contenders for a four-momentum and mass definition for
general two-surfaces.

Motivation and definition Th.e—point of view that we
shall adopt is that a component of the (angular) momen-
tum is the value of the Hamiltonian that generates the
corresponding translation (rotation). There are various
difficulties with implementing this point of view rigorous-
ly in the case of gravitation so the motivation for the for-
mula is partly heuristic. See [6] for further discussion.

The total Hamiltonian: We have the Sen-Witten iden-
tity (see for instance [7])

d(il, ADA, g A8 ")=iDA, g ADkgA8"

+ 2 X A, Ggg'bs edeo AO Ao

or in Dirac spinor notation

d (f'y8'y, A Dtlr) = DVtA y8' y, A Dier

+ 2
G' (Vty, iir)eb, d, 8'A8 A8 .

Here the 0' are a tetrad of one-forms, the y, are the
Clifford algebra matrices, y=,'4 e' ' y, yby, yd, G,b is the
Einstein tensor, D is the covariant exterior derivative, y is
a Dirac spinor, and kz is a two-component Weyl spinor.
The first term on the right-hand side is the integrand for
the gravitational Hamiltonian, and, when the field equa-
tions hold, the second term on the right-hand side is the
integrand for the rnatter Hamiltonian that generates
motions along the vector field ~~ =pygmy. The left-
hand side is therefore the integrand for the total Hamil-
tonian when the field equations are satisfied.

The Hamiltonian has the following properties. (1) The
total Hamiltonian is an exact form when the field equa-
tions are satisfied so that the integral over some finite
piece of three-surface X depends only on the spinors and
data on the bounding two-surface S=e1Z. This rather
general fact leads to the weak conservation [4] of mo-
menta in general relativity, that is, the independence of
the momenta from the choice of spanning three-surface.
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(2) The value of the Hamiltonian depends not only on the
vector WAX, A, but also on its decomposition into spinors.
For a definition of momenta we therefore need not only a
"quasilocal" definition of Killing vectors at 4, but also a
canonical decomposition of these "quasi Killing vectors"
into products of spinors.

The quasitranslations and corresponding momenta: In
order to define a real four-momentum we must have a
definition of real "quasitranslations" together with their
decomposition into spinors at S.

The new definitions use spinors k~ and their complex
conjugates that are holomorphic or antiholomorphic on 4
relative to the complex structure induced on S by the
metric and on the spin bundle S~ by the spin connection.
(This type of idea is used in the context of Yang-Mills
theory in the definition of quasilocal charges for Yang-
Mills by Tod [9].) There are therefore two definitions,
one where the primed spinors are holomorphic, and the
other where they are antiholomorphic. This leads to the
following equations:

&B'=l 0A A'

and

BXB =o i VAAXB =0,A A'

I I

where o oA and t i are, respectively, the outward and
inward null normals to 4 and VAA is the space-time spin
connection (6 is the t) operator on Sz ~s). For brevity we
shall concentrate mainly on the holomorphic case—the
other case is obtained by time reversal of all the formulas.

Generically S~ is trivial as a holomorphic vector bundle
(with respect to either 6 or 8) on 1 and so there exists

I I

precisely two linearly independent solutions (kz, Xz )
=X~, A'=0', 1'. Note that there will, however, be excep-
tional two-surfaces on which Sq is not trivial as a holo-
morphic vector bundle. When this happens the solutions
will be proportional and, perhaps in very exceptional
cases, there will be more than two solutions. For such
two-surfaces the construction as it stands breaks down.

We now define a quasitranslation to be a four-vector
field on 4 of the form

+AA'~A'~A ~

A' A

where the It~~ are constants. Quasitranslations are thus
given by linear combinations of these spinors and their
complex conjugates. The resulting value of the Hamil-

I

tonian for KAA is I'—KAA, where the momentum vector

+—"is defined to be

P44'= &~ n—"DX"AO""'
4 G« I z'

(Penrose's definition can be understood within this frame-
work, but the definition provides ten complex quasi Kil-
ling vectors with, in general, no method to determine
which of them are translations or any guarantee that any
of them are real; see [8] and [6].)

The mass: In order to define a mass, we must be able
to define a constant eAB so that we can define

=~—~—~AB ~A'B'.2 AA' BB'

The natural definition is e——=X~X~e . It follows
from &,A =0 that 6e——=0, so that the e—— are holo-
morphic and global functions on the sphere and hence, by
Liouville's theorem, constant.

Angular momentum: One can define more general
quasi Killing vectors that include rotations using local
twistors (co",z~ ) restricted to S satisfying either
B(co,tt~ ) =0 or 8(t0", tran ) =0, where 8 and 8 are the
holomorphic and antiholomorphic vector fields on 1 as
above acting according to the local twistor connection.
These equations are guaranteed to have just four in-
dependent solutions generically since as before these are
8-type equations whose solutions are holomorphic sec-
tions of a holomorphic vector bundle on the sphere S.
Generically the holomorphic vector bundle will be trivial
and so there will be just four linearly independent solu-
tions (to,",tr, ~ ) =((coii, tto~ ), . . . , (t03",tt3~ )). These
can be used to define quasi Killing vectors, and quasicon-
formal Killing vectors according to various recipes (see
for instance [6]) which then give rise to angular momenta
by substitution into the Witten-Nester form.

Flat space linea-rized theory and infinity In flat.—
space, the k~ given by both definitions are guaranteed to
be the restriction to 4 of the constant spinors, since they
certainly satisfy the 6 and the 6 equation, and the solu-
tions are unique. The integrand therefore vanishes since
it contains the derivative of the constant kA giving the
correct answer PAA =0.

A similar argument works at spacelike infinity. The
asymptotically constant spinors certainly satisfy both the
8 and 8 equation asymptotically, and so, by uniqueness,
span the solution spaces. The integral is then the expres-
sion for the Arnowitt-Deser-Misner energy as used by
Witten [10];see also [11].

In order to see that one gets the correct answer for
linearized theory, it is convenient to turn the integral into
a volume integral using the "Sen-Witten" identity:

(~ —iA~DA~AO = [—iDX~ADX~AO —
2 X~X~G eb,d, O'AO AO'],

4zG 4~G~ &

where X is some three-surface that spans S. Since to zeroth order the XA's are constant, DA, A are first order so that the
first term on the right-hand side is of order s . The linearized Einstein tensor G,b is already of order e so that the kA s
in that term can be taken to be the constant spinors. This second term therefore gives the correct answer, that is, the in-
tegral of the momentum density of the source. (Energy-momentum is part of the charge integral for general relativity
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Ig(cV) (~ [XJ (Sip'+pl, ~ ) —Ap(%, ~
+p'Xp )]dS .

Consider first the system of equations H.~ =0:

N, ) +p'kp =0,

&o+a ) =0.
Then using (2) and integrating by parts we get

4trGP =Ig($) =(~ (p'A, pA, p+pk)X) )dS. (4)

Let S be spanned by a nonsingular spacelike three-
surface Z on which the dominant energy condition is
satisfied. The Sen-Witten equation n V~ A, ~ =0 on Z
(where n' is a normal to Z) is an elliptic system of two
first-order partial differential equations. We may there-
fore find a solution [13] A, z on Z satisfying the boundary
condition

on S. In general, A.p will diA'er from A, p on S. Denote
this difference by

Y=kp —
Ap .

We now relate 1~($) to Ii ($):
(6)

Ig($) =II~ b.~(N, p+pA, ~ ) —
A,p(%, ~

+p'Xp')]dS

=(~ h)(%o+pX) ) —Ao(%, ) +p'tto)]dS

[4].)
Positivity. —For a good definition it is essential that

the momentum vector should be future pointing when the
two-surface can be spanned by a three-surface on which
the data satisfy the dominant energy condition. The fol-
lowing argument is an adaptation of a positivity argu-
ment used in a different context in Ludvigsen and Vickers
[2] and based on [10]. In the following we show that P
is non-negative, and write, for simplicity, A, z =X& .

Theorem: The quasilocal momentum component P
defined by H.~ =0 (&~ =0) is non-negative whenever
p'~ 0 (p~ 0) and S is spanned by a three-surface on
which the dominant energy condition is satisfied.

Proof: Let A, ~ be some field defined on a two-surface S
and let Iq(/) be the integral of the Witten-Nester two-
form A=iA, ~DR,~ AO over S'. In spin coefficients and
the Geroch-Held-Penrose formalisin [7,12], this may be
written as

tegration by parts. When the matter on X satisfies the
dominant energy condition we have the inequality
I~($) ~ 0 [10]. Hence whenever p'~ 0, Iq($) ~ 0.
Since P =(I/4ttG)Ii. ($), this implies that P""—is fu-
ture pointing as required.

Consider next the equation H.z =0. An analogous ar-
gument to the one above but now with Xp'=kp' as bound-
ary conditions for the Sen-Witten equation will show
positivity whenever p ~ 0.

Since p and p' are the convergences of the outward and
inward null normals to 4, the conditions p ~ 0 and p'~ 0
are the condition that the two-surface is (suitably) con-
vex, i.e., that there should be no indentations. This will

be satisfied by a wide class of two-surfaces in a generic
space-time.

Further results. —These momentum definitions have
been computed for round spheres, for small spheres, and
for large spheres that approach cuts of null infinity.

For round spheres both definitions give the "standard"
answer I=R (@~~+A—+ )2/G (where R is the radius
as computed from the area, and the terms in parentheses
are components of the curvature as in [7]). This is the
same answer as Penrose's definition and the Hawking
definition, see [14]. For small spheres both definitions
give the expected contribution from the energy-
momentum tensor at third order, and, when this vanishes,
a contribution from the Bel-Robinson tensor at fifth or-
der. At sixth order the two definitions differ.

For large spheres approximating a cut of future null
infinity the definition for which the primed spinors are
holomorphic gives the Bondi mass. In the absence of ra-
diation the mass has been computed to third order in 1/r,
where r is an affine parameter along the null geodesics of
an outgoing null hypersurface and the computations give
reasonable answers. The definition for which the
unprimed spinors are holomorphic diverges linearly in the
affine parameter as the large sphere goes out to infinity
when there is radiation. When there is no radiation this
second definition gives the Bondi mass also. The roles of
the two definitions are reversed at past null infinity.

These results will be given in full detail in a subsequent
paper.
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=)t [p XoA,p+pX)X( +p'ipse. o
—p'A, oko}dS
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where we have used Eqs. (2), (4), (5), and (6) and an in-
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