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Classical and Quantum Superdiff'usion in a Time-Dependent Random Potential
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We consider wandering of a nonrelativistic particle in a time-dependent random potential in d spatial
dimensions. Its root-mean-square displacement from the initial position increases superdiffusively with
time t as t " for d & l, and as t in d = 1. Its kinetic energy increases as t ' for d & l, and as t in
d=l. These scaling behaviors hold for both the classical and the corresponding quantum-mechanical
problem in continuous space-time and differ from those of lattice models.
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(U(x, t)U(x', t')) =G((x —x'(, t t'), —(2)

with G(tx[, t) rapidly falling off to zero for ~x~ & g or
~
t ( & g„ for example, G —exp( —x /2(„—t /2(, ). The

corresponding quantum-mechanical problem described by
the time-dependent Schrodinger equation,

8yi h = — V iir+ U(x, t )y,|It 2m
(3)

recently attracted attention in relation to the propagation
of directed waves in (d+1)-dimensional highly aniso-
tropic scattering media [1]. Similar in form, though in

detail very diAerent, is the random directed polymer
problem [8), which is the imaginary-time version of (3).
The original, real-time model is interesting in its own
right [5-7], for example, to model the motion of a light

Quantum mechanics of a particle in a time-indepen-
dent random potential has attracted enormous attention
in the past years. On the other hand, interest in the dy-
namics in a time dependent -random potential started to
grow only recently [1-4], though the problem was ad-
dressed long ago by Ovchinikov and Erikhman [5] and by
others [6,7]. At the classical level this problem is de-
scribed by Newton's equations

dp BU dx p
dt Bx' dt m

'

for the momentum p and the position x of a particle of
the mass m. U(x, t ) is a time-dependent random poten-
tial, with zero mean and with short-range correlations
both in time and in space, of the form

test particle placed in a gas of much heavier particles. If
the test particle is at rest at t =0, its velocity will start to
grow due to collisions with heavy particles. In a long
range of time scales in which its velocity is still relatively
small, one can neglect its inAuence on heavy particles and
model their effect on the test particle by a time-dependent
random potential. This model breaks down at sufficiently
large t: The light particle eventually comes into equilib-
rium with heavy ones —its average velocity is constant
while its wandering is ordinary diAusion at large t.
Nonetheless, for time scales in which the stricto sensu
random potential model is still appropriate, the test-
particle velocity typically increases with time. Thus, its
wandering, measured by the mean-square displacement
from the initial position (x ), cannot be a simple
diffusion. Since the particle, on average, gains the energy
from the random time-dependent medium, one might ex-
pect a superdigusive behavior [1,7] even for t

This Letter presents the first deep theoretical insight
into superdiAusion of a stricto sensu time-dependent ran-
dom potential model in d spatial dimensions. We find,
for both the classical and quantum cases, that the scaling
laws of this superdiffusion are superuniversa/ for any
d & 1: (x )'t increases in a superlinear way as t l while
the particle average kinetic energy (Ek;„) increases as t '

The case d= 1 is special. We find (x )'i —t t, while
(Ek;„)—t . These behaviors, obtained for the continu
ous space-time model, are strikingly diA'erent from those
of the lattice versions of (3) for which (x ) increases as in
ordinary diffusion [2,4-6].

To derive analytically these conclusions for the classi-
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cal problem, Eqs. (1) and (2), we will presume that U(x, t) is a Gaussian random variable. By applying the classical
Martin-Siggia-Rose formalism [91 to this problem, one directly obtains the probability weight of the particle path {x(t)]
as the functional integral over an auxiliary vector function Y(t) = [Y) (t), Y2(t), . . . , Yd(t)]:

P((x(t)f) — DV xxp i Ch Y(&) I, + (x(t)t) , )ai dt x

fO d2X
DYexp i dtrnY~

aJ dt

fO

dt) dt2 Yj(t ()Fjt, (x(t () —x(tp), t (
—t2) Yt, (t2) (4)

where

Fjp(x, t) = — G(IxI, t)
xj xi((

(summation over repeated indices is presumed). To discuss Eq. (4) we consider the weak disorder limit in which one
can expand

x(t() —x(tp) =(t( —tp)
dx
dt

1

+ e ~ ~

and Yt, (tq) = Yt,. (t()+ . Thus, to the leading order,

d'xt, (t)P({x(t)I)- DYexp i dtm Yt, (t)
dt

dt Y (t)M, Y, (t)1 x

with v = IvI,

Mt (v) =—

and

I~ oa B2G
dt

2 (x, t)
Bx

& x Et'

1 BG
MT(v) = — dt — (x,t)

x Bx
X 1V

Equation (5) is exactly the Martin-Siggia-Rose gen-
erating functional for the following Langevin process
describing the diffusion in the particle velocity space:

dem ' = [M ' '(v)],I, gt,

V Vg
[M (v)] '" ', + [MT(v)] '"

Sjl,— ', gk,

where g is a Gaussian white noise with the correlator
(gj (t ) rtt, (t')) =8&t, 6(t —t') The Fokker-P. lanck equation
for the velocity distribution function P(v, t) then reads

[M '"(v)] t [M '"(v)]«-P.
Bt m Bvj

Here the matrix M~I, is a function of the particle velocity
v =dx/dt given by

p oo

M,p(v) =„dt[F,t, (x,t)],=,
vg vg vjvI(=M, (v) ', +M, (v) S,, —

For concreteness, let us consider G(IxI, t) =Aexp( —x /
2(„—t /2(i ) for which MT=8[1+(v/v()) ] 'j and ML
=8[1+(v/vo) ],where v() =g„/(i is, in the follow-

ing, an important velocity scale and 8=(2x)'j A(i/ g.
Note that for v((v(), MT(v) =Mt (v) =8=const, while
for v»vo, MT —v ', MI —v . In fact, these asymp-
totics of MT and Mz hold for a general but sufficiently
smooth G(IxI, t).

Let us consider a particle with x =0 and v =0 at t =0.
In a range of time scales v will be smaller than vo. Equa-
tion (7) thus reduces to mdv/dt =8'j rl. Thus, trivially,
(Ek;„)—(v ) =Bt/m, whereas (x )'j —t, as argued in

Refs. [1] and [7] by considering U(x, t) which is 6 corre-
lated in time; i.e., (i =0, and thus v() =(x. For any real
istic U(x, t) having (i & 0 (vo (~), this scaling behavior
breaks down at the time scale t =()mvo/8 when (v )
reaches vo.2

We proceed to discuss first the true asymptotic behav-
ior at t» t() for d=1. Then Eq. (7) reduces to mdv/
dt = [Mt (v)] 'j rt(t). Let us introduce the function

y(v) =„,dv'[8/ML(v')]'t',

and make the change v w=(t)(v). The dynamics of
w (t ) is governed by the simple random-walk equation
m dw/dt =8 ' j

g (t ) implying a Gaussian distribution for
w(t),

P (w(t), t) =[2m(w'(t))] '"exp[ —(w'/2)(w'(t))],

with (w (t)) =Bt/m . Then, by noting that v(w)
'(w) —w, if Iw I «vo, while —sgn(w) I w I
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(w(» vp, one directly obtains

t, if t(&tp,
2

t if t» tII (d=l).
The mean-square displacement (x (t)& =fpdt I fpdt2
x(v(tI)v(t2)) can be calculated by means of the stan-
dard random-walk pair distribution function

P(w(tI), w(t2)) =P„(w(tI))P„(w(t2) —w(tI), t2 tI)

for /2& tI. One thus obtains

t, if t « tp,
( 2) I/2 ~

t "' if t » t p (d = I ) .

We now discuss d & I by means of Eq. (8). For a par-
ticle with v=0 at t =0, P(v, t) will be radially sym-
metric, i.e., a function of v =(v( only. Equation (8) im-
plies that the distribution of the velocity magnitude,
P,, (v, t)-P(v, t)v ', satisfies

BP,,

Bt
[M ( )] I/2 [M (,)] I/2 [M ( )] I/2 P

m v g)

On
dist

ce again
ributio

P (w, t) =P,. (v, t)dv/dw =P,, [M/. (v)/8] '

satisfies, by (9),

aP.
Bt

—(d —1)g(w) P„, (10)a a a
m2 |Iw Qw

with g(w) ={[MT(v)/8]'/'/vj, , =~- t ). g-w ', if w

((vp, while g —w /, if w » vp. Equation (10) is

equivalent to a standard Langevin process,

dw B B I/2= (d —I ) g(w) + rl(t ),
dt m Pl

t, if t « tp,
t' if t» to (d&1).

The mean-square displacement, (x (t )) =fp dt I fp dt 2

XI (tI, t2), with I (tI, t2) =(v(tI)v(t2)&, can be obtained

by the following line of physical arguments. Equation
(7) implies the following equation for the precession of
the velocity unit vector n =v/v:

dn I
[MT(v)l '[rl —n(n rl)].

dt mv
(12)

Let us introduce the mean free time r such that
&n(tI)n(t2))=1, i.e., I (tI, t2) =&v (tI)), for (tI —t2(

while (n(tI)n(t2)) =0, i.e., I (tI, t2) =0, for
(tI —t2( & r~. Thus (x'(t)) =ftIdt'v'(t')z (v(t')). To
estimate r (v), consider a particle with v along n(tI) at
t =t

I and split n(t) into the components (nL, nT), respec-

where tl(t) is white noise with (tI(t)rt(t')) =b(t —t').
The first term in (11), vanishing in d =1, is a drift-type
term driving w, i.e., v to infinity as t ~. In the absence
of the noise, the drift term drives w as dw/dt —w

i.e., as w —t, for t» tp. The inclusion of the noise
term does not alter this scaling —it only produces a small
variation of w of the order bw —t '/ «(w) —t /. Thus,
the distribution P (w, t) is, for t» tp, sharply peaked
around w-t /. As v —w /, it follows that P,, (v, t) is

sharply peaked around v —t '/ so (v )—t '/ . To summa-

rize our results,

tively, parallel and perpendicular to n(tI). Thus nt = I

and nr =0 at t =tI. Then, by (12), for (nT(«1,
dnT/dt = tIT(t) [MT(v)] ' /mv. Thus (nT(t2)) —(t2—tI)MT[v(tI)]/v'(tI), or, as MT —v ', (nT(t2)) —(t2—tI)/v . For t2 —tI =&~, (nT(t2)) = I so r (v) —v .
Thus, with v -t '/, one eventually obtains (x (t)) '

-t for s » tp. To summarize our findings,

if t « tp,
x2 I/2

t ' ' if t » tII (d & 1) .

We proceed to discuss the quantum-mechanical prob-
lem, Eqs. (2) and (3), for initial I// of a wave-packet
form. (x ) and (Ek;„) are expressible in terms of the aver-
aged (over the disorder) density matrix p„. „(xI,x2, t)
=(IIv(xI, t)y*(x2, t)). To calculate p.„„one has to average
the product of two quantum-mechanical Green's func-
tions which can be represented by means of a double path
integral over two sets of paths {xI(t)j and {x2(t)j [10].
One can easily show that the average of this path integral
over the disorder is a path integral dominated by
"paired" paths with xI(t) =x2(t) [11]. A deeper insight
into this pairing is gained by changing variables of the
double path integral:

xI(t) =x(t)+ —,
'

II2 Y(t), x2(t) =x(t) ——,
'

Itt Y(t) .

Thus, the disorder favors paths with Y(t) =0. Moreover,
the expansion in powers of 6Y, to the leading order in 6,
reduces the quantum problem to the classical path in-

tegral (4). Higher-order terms, in II2, of this quasiclassi-
cal expansion are likely to be irrelevant —the disorder, by
pairing paths, enforces that previously derived classical
superdi+usion scaling laws hold also for the quantum
problem This doe. s not contradict previous studies
[2,4-6] indicating ordinary diffusive behavior (x )—t at
large t: They consider a single-band tight-binding model
(SBTBM), i.e., a lattice model rather than the continu
ous space-time Schrodinger Eq. (3) considered here.
SBTBM has bounded Ek;„(E „„=2h /ma, with a the.
lattice constant. This energy cutoff' prevents indefinite
acceleration, and, consequently, the superdiA™usion at
large t. This is, however, an artifact of SBTBM: In-
clusion of higher-energy bands would allow for an unlim-
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FIG. l. (a) &k& =2&Ek;,&/E „vs t (in units of 2h/E „,). In-
set: &k& t —t for t & ti =450. For t & t~, &k& = 1. (b)
&x'&' /a —t for t & ti, and t ' —for t & ti

rates to I (Ek;„=E „„/2. ) indicating complete phase dis-
order at the scale a, and, thus, the dominance of the lat-
tice eA'ects of SBTBM. Consistently with this, for t & tI,
(x ) '/ —t ' — ' = t /, as in our continuous theory,
while for t & tt, ordinary diffusion, (x ) '/ —t '/, prevails
[Fig. 1(b)]. This diffusion is thus a lattice effect of
SBTBM—inclusion of higher-energy bands would re-
move the upper energy cutoA and allow for superdiAusive
behavior even for t

We thank M. Kardar, Y.-C. Zhang, A. Yodh, and D.
Sornette for discussions. This work is supported by
DARPA under Grant No. Army DAAL 03-89-K-0144.

ited increase of Ek;„promoting superdiff'usion even for
t in a stricto sensu time-dependent random poten-
tial model. We emphasize that the continuous version of
such a model is appropriate to the directed wave model
[I], or to describe a light test particle wandering in a gas
of much heavier particles —in both cases there is no un-

derlying lattice.
To verify the equivalence of the classical and quantum

superdiffusive behaviors and to clarify the role of the lat-
tice eff'ects, we simulated ID SBTBM ((3) with V Ilr

&iy/a =ly(x+a) —2y(x)+ y(x —a)]/a ) which
can be used to argue about the continuum theory as long
as y(x, t) is smooth on the scale a. This smoothness can
be tested by computing the lattice version of the kinetic
energy, Ek;„=—(ft /2ma ) P„ay*(x)sty(x), satisfy-
ing 0&Ek;„&Em,„ for a normalized y [+~a(y(x)(
=ll. Thus, k 2Ek;„/Em,. „&2. k(&I for y smooth on

the scale a. &k) = I for a y with a randomly chosen phase
at each lattice site. We solved SBTBM by discretizing t

(with step r) and applying the unitary second-order
product formula [12]. We used a smooth initial

y(x, 0)—exp( —x /4xo) with xo»a (Refs. [2,4] used
xo=a so Ek;„=E malready at t =0). We correlated
the disorder by imposing that for (x,t) in the range
x~ (x (x~+N„a and t~ (t & t ~+%,r, U(x, t) is a con-
stant drawn randomly from the interval )U~ (Uo. The
lattice had 3000 sites. The disorder average is obtained

by averaging over N samples. Results for N =3, 1Vl =5,
xo=6a, r =26/EI, „Uo/Em.,„=0.015, and )V =6 sam-

ples [13] are shown in Fig. l. In agreement with our re-

sult, &k)-&Ek;„)-t / [see the inset of Fig. 1(a)t up to
t =ti =450 (in units of 2h/Em. ,„). For t ) tt, &k) satu-
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