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Complex Fractal Dimension of the Bronchial Tree
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The architecture of the mammalian lung has been shown to be correctly described using a fractal
model with a complex dimension, related to a Cantor set with random errors, for four diAerent species.
Here we provide an interpretation of that model that has implications for biological evolution. We argue
that fractals are more error tolerant than other structures and therefore have an evolutionary advantage.

PACS numbers: 87.1G.+e

Recent work has implemented the ideas of fractal
geometry and renormalization-group theory to study the
architecture of physiological forms [1-4]. The descrip-
tive success of these investigations suggests that there is
an evolutionary advantage to branching systems having a
fractal dimension [5]. Here we focus attention on how

the size of the airways in the mammalian lung [6]
changes as one proceeds down the bronchial tree. The
fractal model overcomes limitations of classical analysis
[I].

The morphology of the bronchial airway of the mam-

malian lung has fascinated physiologists for well over a

century. Until recently the architecture of the lung has

been understood in terms of the quantitative symmetric

scaling model of Wiebel [6]. The investigation of Wiebel

and Gomez [6] demonstrated the existence of fundamen-

tal relations between the size and number of lung struc-

tures. They considered the conductive airways to be a di-

chotomous branching process, so that if z denotes the
"generation" and n(z) the number of branches in the zth
generation, then n(z) =2n(z —1). This functional equa-
tion has the solution n(z) =2', since there is only a single

conduit at the z=0 generation (trachea). A similar ar-

gurnent based on the conservation of air volume between

successive generations leads to the expression for the
average diameter of the bronchial airway d(z) =e "do,

l

where do is the diameter of the trachea, a= 3 ln2, and

we have used the scaling relation d(z) =2 '1 d(z —1)
[6].

The above symmetric model of the mammalian lung is

consistent with the mathematical view of a self-similar
branching process. Consider, for example, the Cantor set
depicted in Fig. 2.2. 1 in Ref. [5]. In this example we
consider a line of unit length in generation z=0 (cf. Fig.
2.2.1). In the first generation (z =1) we remove the mid-
dle third from the line segment. In the second generation
(z=2) we remove the middle third from each of the two
remaining line segments. This procedure is repeated until
at generation z the length of any one line segment is given
by L(z) =1/3'. Equivalently, the length of a single line
segment can be written in the exponential form [7]

(Z)ez ill 3

just as was found for the average diameter of the bronchi-
al tube.

There are a number of properties of the mammalian
lung which do not satisfy the symmetric branching model.
The first is that the predicted exponential decrease in the
average diameter of an airway is not supported by the
data beyond z =10, after which there is a marked devia-
tion as shown in Fig. 3A of Ref. [1]. The second is the
asymmetry observed in the branchings of the bronchial
tree. West, Bhargava, and Goldberger [1] have attempt-
ed to take these properties into account by using the con-
cept of a fractal, i.e., by assuming the lung to be a scale-
free branching process described by a renormalization-
group relation. In Fig. 1 we see that the fractal model
does an excellent job of capturing the features of the
average diameter:

D(z) =A(z)/z~, (2)
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FIG. 1. The data from Raabe et al. [81 for the average diam-
eter of the mammalian lung for four distinct species is com-
pared with the predictions of the fractal model of the lung [5].
The symbols are the data points and the solid curve the results
of the fractal model (taken from Ref. [51).

where A(z) is a harmonic function in the logarithm of
the generation index z and p & 0 yields a dominant in-

verse power-law behavior. This functional behavior,
mathematically valid for large z, is observed for four
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separate species, human, dog, rat, and hamster, for ap-
parently all z and therefore may well be a general proper-
ty of mammalian lungs.

The question we address now is how to infer the
geometry of the lung from the algebraic law of Eq. (2).
We argue that, surprisingly, only slight random rnodifi-

cations in the Cantor-set picture are needed to yield a
branching process consistent with the exponential law for
early branching and the algebraic law for later branch-
ing.

One might suspect that nearly symmetric branching
could explain the crossover between Eqs. (1) and (2). If
the branching segment split into two nearly equal diame-
ters of p and q =p+e with e small, then the asymmetry
would not be noticed until several generations of branch-
ings, and Eq. (1) would appear to be satisfied. This two-
scale multifractal Cantor scheme would yield z + 1

different size (p and q) diameters in the zth generation in

contrast to the single size diameter in the one-scale
Cantor-set picture. As appealing as this sounds, once
average diameters are calculated the exponential law
remains for all generations. Explicitly, after one genera-
tion the average length is L(1)= —,

' (p+q), after two gen-
erations L(2) = —,

'
p + 2 pq+ 4 q, and so on. At the zth

generation the average length of a line segment is

L(z)=(I/2')(p+q) =e ",
where zo ' = Iin[(p+q)/2] I Thus if p =q = 3, then (3)
reduces to the previous result (1) for the symmetric
tetradic Cantor set. For p&q, however, the zth iteration
of this process looks quite different in that it is signifi-
cantly more irregular than the tetradic Cantor set, even
though the average length (diameter) follows the same
exponential law.

As we mentioned, the exponential scaling fits the bron-
chial data for the first ten generations, but fails complete-
ly afterwards. It is possible to introduce a saturated ex-
ponential, which for certain parameter values will "ap-
pear" as an inverse power law modulated by a single os-
cillation over the range of z values. However, such a
model has not been developed seriously and applied to the
data. We argue that the proper fit to the data is an alge-
braic law with logarithmic oscillations [1]. Thus the ob-
served average diameter at a given generation for z ~ 10
is larger than would be expected from the Wiebel-Gomez
law.

To systematically account for the new scale sizes in the
bronchial tree let us assume that we can write the ex-
ponential scaling law as d(z) =qod(z —1), where qo is

the appropriate constant. Now we extend this model by
assuming that a new scaling parameter ql occurs at each
branch node with a probability p and the branching ratio
remains the same with probability 1

—p. If there are two
scales qo and ql permitted, then in generation z,

z —l

D(z) =(1 —p)'q()+p P q(i q( (I —p)'
m=l

The first term in (4) accounts for no change in the
branching ratio qo in z generations. The second term has
the first z —m generations with the branching ratio qo
followed by m generations with the branching ratio ql.
Thus the total contribution to the average diameter is the
sum over all these possible intermediate states weighted

by the appropriate probabilities. We introduce the pa-
rameter f=qo/q( & I and assume p «1 so that the first

change to a larger diameter occurs at large z and we can
rewrite (4) as

D(z) =d(z)+ yd(z/N)+ (5)

The parameters y and N in (5) are those introduced by
West, Bhargava, and Goldberger and are given by

y=pf(/(1 —p)(1 f() a—nd N =I+Inf(fln[qo(1 —p)] in

terms of the new parameters. It is possible to show by
the introduction of additional scales q2, q3, . . . that the
higher-order terms in y and N in (5) impose the relations

Inf„
ln(1 —p) q„

where f„=q„- /q(„, n =0, 1, . . . , z, so that (5) can be

written as the infinite-order series expansion of the

renormalized-group relation

ln f„
ln(1 —p)q„

D(z) = yD(z/N)+d(z)

where, in general, y and N restrict the allowed scales [q;].
This scaling law produces an average diameter of the

form (2) with p = —lny/lnN and A(z) periodic in lnz

with period lnN. The solution to the renormalization-
group relation given by (2) is only valid mathematically
for large z as discussed by West, Bhargava, and Gold-
berger [1]. Thus we would have expected that (2) is a
faithful description of the lung asyinptotically and not for
small z. A good fit to the data from the four mammalian
species mentioned is A(z) =Ho+A(cos(2xlnz/InN) [cf.
(2)]. From the quality of the fit to the data it appears
that for z beyond the fifth or sixth generation we are in

the asymptotic regime. The question remains: "What
branching structure is implied by the scaling equation
(4) spt~

In order for the series (5) to converge we must have

y & 1. We have found that p can be both greater than or
less than unity depending on the species [9]. From the
data depicted in Fig. 1 we obtain @=0.86 and 0.90 for
the dog and hamster, respectively [9], from the slopes of
the average diameter curves and N = 9 as the period of
oscillation in A(z) [1]. In a similar way we obtain

p =1.26 and 1.05 for the human and rat [9], respectively,
with N = 11 [I]. These parameters yield yh„„.„=0.05,
yrat =0.08, yd« =0.15, and yhamster =0 12, which are
overestimates based on the complete data sets as are the
values for N. A smaller and perhaps more realistic value
of N would be obtained by ignoring the first few data
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points (low z) in estimating it. We do not do that here.
If we select the scale qo to have the optimal value [6]

I/2't =0.7937, we find from the above data that ql = 1.0
for all four species to within 1% and therefore f=0.80.
This implies that the typical increase in scale size is about
25% when it occurs. The parameter with the greatest
variability across species is the probability of such an
event occurring:

ph„„.„=—0.012, p„„.t ——0.02,

pdog=0. 04 & phafnster=0 031 i

in which we see a variation of a factor of nearly 4 be-
tween humans and dogs. Note that the p's are the proba-
bility of having a scale change qo qi at each branch
point; that is the reason they exceed the y's which denote
the probability that the average diameter possesses a cer-
tain overall scale larger than qo. Note that these num-

bers are estimates based on the assumption that the
asymptotic form for the average diameter at each genera-
tion of the bronchial tree is appropriate. We note that
the solution to the scaling equation that provides the best
fit of the data can be written as the real part of 1/zs,
where P is a complex number given by P=p+t'2tr/In~
We refer to the parameter P as the complex fractal di-

mension for the branching process.
A rationale for why nature chooses the above fractal

ordering rather than the classical scaling may be present-
ed in terms of the added tolerance of the former to error
(variability) in the bronchial tree over that of the latter.
If we assume that the scale zo in (3) has a random com-
ponent such that I/zo =1/zo+ g, where I,

" is a zero-
centered Gaussian random variable of width a and zo is

a constant, then the average error in the classical diame-
ter propagates as e, (z) =exp[a (Inz) /2], where cT is the
mean-square level of the error fluctuations. If in a simi-

lar way we assume that the index p in the fractal model
has a random component such that p =p+ g, where g is

again a zero-centered Gaussian variable of width o. and

p is a constant, then the average error in the fractal di-

ameter propagates as eF(z) =exp[tT (lnz) /2]. Thus we

can determine the relative sensitivity of the two models to

errors. For example, if o =0.02, we have a relative aver-
age error e„/eF of 2.6 between the classical and fractal
models at z =10 and one of 8.82 at z =15. Even at the
extreme value of z=20 the fractal model has an average
error of 1.09, whereas the classical model has one of 54.6,
indicating how insensitive the fractal model is to fluctua-
tions. These results imply that in a large population of
lungs satisfying classical scaling with errors the average
diameter could diA'er from the exponential result by an
order of magnitude beyond the fifteenth generation. An
organism with this sensitivity to error would not survive
over many generations of the species.

We tentatively conclude from this simple argument
that the fractal architecture is significantly more error
tolerant than the classical one. This implies that there is

an evolutionary advantage to the fractal structure [5]
suggesting an explanation for its apparent ubiquity in

physiology.
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