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The temperature dependence of the Hall eA'ect in the normal state is a common theme of all the cu-

prate superconductors and has been one of the more puzzling observations on these puzzling materials.
We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum
fluids which correlates the anomalous Hall and resistivity observations on a wide variety of both pure
and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong.

PACS numbers: 74.70.Vy, 72. 15.Gd, 72. 15.Qm

One of the most striking and puzzling anomalies of the
properties of the "normal" metallic state of the cuprate
superconductors is the strong temperature dependence of
the Hall resistance in the a bplan-e. Ad hoc fits using
complicated cancellations among hypothecated bands do
not address the universality of this observation seriously
nor explain the close correlation which is seen with T,
upon doping [1]. (Note that plotting ntt ~1/RH makes
the T dependence appear to decrease with impurity addi-
tions just because the scale of n goes down. The tempera-
ture dependence is basically similar in all samples as we
shall see. )

Recent plots of the data in a form suggested by a pre-
liminary version of the present theory have demonstrated
considerable regularities in this phenomenon, when plot-
ted in terms of the Hall angle OH =RH/p rather than RH.
(See, for instance, the accompanying Letter by Chien,
Wang, and Ong [2].) We see that a reasonable fit to a
sequence of doped single-crystal samples is given by

Ott
' = (ta, r ) ' =A+ BT

where 8 vanishes in most pure samples. The quantity 9
is proportional to Ni or Zn doping in YBCO and 8 is
constant for all dopings. We argue that this is a mea-
surement of a "transverse" relaxation rate (r~) ' which
is the intrinsic relaxation rate i,~ of quasiparticlelike ele-
mentary excitations (spinons) of the Luttinger liquid.

In a sequence of papers [3-5] we have developed the
idea of the "tomographic" Luttinger liquid. We showed
that the anomalous forward scattering which accom-
panies the existence of an upper Hubbard band leads to
an eA'ective Landau interaction between up and down

spins:

fkk' riIek &k'I/« —k')'.

This has the form of a "statistical interaction, " a kind of
fractional exclusion principle [6] in that the addition of
an up-spin electron restricts the Hilbert space available
for the down spins, and in particular does not allow the
occupancy of the state k'=—k. Equation (1) follows from
this and the incompressibility of Hilbert space.

We note that for states near the Fermi surface, (1) acts
only for almost exactly parallel k and k'. To remove the

singular interaction, a zeroth-order tomographic rediago-
nalization at each point on the Fermi surface is necessary.
Luther [7] has shown that kinetic energy and the ex-
clusion principle lead to a "bosonized" eAective Hamil-
tonian which is summed over density waves p (Q) local-

J%

ized to the various directions "A" on the Fermi surface:

P,'s. =2trvF g p (Q, n)p. ( —Q, t1), (2)

where p are tomographic Tomonaga bosons made up
from fermion operators with k"s only along the specific
direction 0, and unrelated to the RPA density waves.
They satisfy

[p.(g, n), p (Q', &')1= (3)

The interaction (I) simply adds a mixing term of the
same form as (2) between up and down spins:

const && g p1(Q, 0 )pi ( —Q, 6 ) .
Q, n

(4)

Here, the b's are bosonized representations of the charge
and spin Auctuations. It is not simple to reconstruct the
original electron field variables from the b's and we refer
to the references for that process. However, correlation
and Green's functions calculated from the bosonized form
of the one-dimensional Hubbard model are now known,
and those of the 20 Luttinger liquid are just averages of

fh

these over the angles Q. Most properties —such as, for
instance, conductivity and magnetic susceptibility —can
be expressed in terms of these correlation functions.

The physical meaning of these expressions can then be
interpreted in terms of two kinds of solitons: spinons,
which behave like electrons with spin and no charge and
form a Fermi surface of the original size; and holons,

This extra term is not innocuous: After a Bogoliubov
transformation it then leads to separate Fermi velocities
for charge- and spin-density waves, (Ov) and v, (h).) (Qv). For each radial direction, the zeroth-order
"fixed-point" Hamiltonian is that of the one-dimensional
Hubbard model as given by Haldane [8] (for instance):

'P =gg hkF(O) [v,, (Q)gb,*„b,„+v, (Q)g-b, *. „--b,.„-] .
Q
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which are like tomographic collective modes of the two
Fermi surfaces at opposite ends of the vector 0, and have
momenta near 2kF. Holons carry the charge. Another
way to think of them is an electron or hole of momentum
near kF, bound to an opposite-spin spinon. The two are
connected by a gauge field which simply implies the
"backflow" condition that what really flows macroscopi-
cally are real electrons, so that, for instance, when holons
move one way the spinon gas moves oppositely. Neither
can be necessarily thought of as true "topological soli-
tons" of an order parameter. The essence of the physics
is charge-spin separation.

When charge is accelerated by an electric field, we cou-
ple in to the tomographic degrees of freedom. One may
discuss the resistivity in either of two equivalent ways:
One may accelerate the "holons" which causes a
backflow of spinons which scatter the holons, leading to a
resistivity proportional roughly to the number of thermal-
ly excited spinons cx: kT [9]. Or, one may accelerate the
underlying electrons, which then decay into charge and
spin degrees of freedom, because the two have different
velocities, at a rate roughly proportional to their energy,
again —kT [3,4]. While these processes are momentum
conserving, they lead to incoherent flows of holons and
spinons which eventually scatter on the lattice: Lattice
scattering determines the outgoing boundary conditions
on holon and spinon wave functions. Thus (z«) ', the
transport relaxation rate for resistivity, is not a true
scattering rate and is independent of impurity or phonon
scattering, but, in essence, is the decay rate of an ac-
celerated electron into elementary excitations. If there is
magnetic scattering of the spinon quasiparticle, ~„, , this
adds to (z&„) '. But the holon charge IIuctuations are
not separately scattered; they are really to be thought of
as collective excitations of the spinon Fermi surface. (A
good way to understand this is the "marginal-Fermi-
liquid' concept that spinons are the limit of electron
quasiparticles as Z 0, and since Z and q are exactly
zero the quasiparticles have only spin and cannot be scat-
tered by potential fluctuations. Nonetheless, they form
the Fermi surface. )

An entirely different situation arises when we ac-
celerate electrons with a magnetic field. The electric-field
interaction term is

eAO'=A ev=
Vk

and acts precisely in such a way as to change the singular
interaction (1) with other electrons in the same "tomo-
graph,

" which is proportional to eI, —ep. The magnetic-
field equation of motion is

~ e ~&I 56k
hc Vk

which specifically displaces all states in such a way as not
to affect the energy e~ and thus the singular interaction

terms (1). States are accelerated only parallel to the Fer-
mi surface, not affecting occupancies. Thus the effects
which cause the conductivity to be anomalous do not
affect the response to a magnetic field, and only genuine
scattering processes enter into 1/z&. Another way to
think is to note that we can turn on the magnetic field
without, to lowest order, disturbing the Fermi surface,
just rotating k space as a whole. Thus, in a sense, the
singular interactions and the magnetic field commute:
We can let the singular interaction turn on after the mag-
netic field, so the response to the magnetic field is like
that of the original electrons. The opposite is true of or-
dinary potentials such as the electric field: The interac-
tions change these responses in a singular fashion, and we
have to turn on the field after we turn on the interactions
to get correct answers.

As we have already pointed out, spinons —which are
effectively the quasiparticles which form the Fermi
surface —can only be scattered by scatterers which in-
teract with the spin current. Of these, there are basically
two varieties: the spinons themselves, and magnetic
defects on the planes —bound spinons. Spinon-spinon
scattering, like any other fermion-fermion interaction,
leads to a T process; magnetic impurities lead to a con-
stant rate r„, '. Thus we expect

I'apex

—kFl,e8 1

2+Ac n

that the Mott-Yofe-Regel parameter kFl is —100 at 100
K in the pure material. From the resistivity, using the
universal formula

a = (e /2rzh )kFl,
we get kFII„=40.

The ratio of these two appears disturbingly low, as
Chien, Wang, and Ong point out in the accompanying
Letter [2]. This may be understood by recognizing that
I =v F r, but that in the Luttinger liquid —unlike any
Fermi-liquid model —the Fermi velocity for spinons is not
equal to that for charge fluctuations, but is probably of
order at least 4 times slower. That is, m,*p;„,„,—5-10,
m,*—2-3. Using —4=v, ./v, (the photoemission data do
not allow a smaller ratio), we get that z~ —10z&„. This is

(5)

with A —1/J or 1/(spinon bandwidth) and Q z„, ' ce pg„.,«.
This provides a reasonably accurate fit to the data in its

T and doping dependence. Both Ni and Zn are substitu-
tional impurities in the Cu planar lattice, and both seem
[10] to lead to a local, spin- 2 impurity (a "bound
spinon"). In the absence of such impurities or other spin
scattering phenomena, one generally finds a quite accu-
rate T dependence for r&. Numerically, inserting the
maximum value of 00 of —4'0 at 8 T observed in 1:2:3
materials, one finds, using
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ber of other contexts [11], for instance, in the T depen-
dence of high-frequency reflectivity data.

The same T dependence is seen not only in other
sources of pure YBCO data but in data on other materi-
als (see Fig. 1) [12]. We emphasize how few param-
eters —basically, only overall scales —are required to fit a
wide variety of experiments on several different quanti-
ties: OH, p, T„and o(tu). I do not see a plausible alter-
native, though of course many implausible ones will con-
tinue to be brought forward.

We are indebted to Don Ginsberg for the unpublished
data, and to N. -P. Ong, J. Clayhold, P. A. Lee, E. Abra-
hams, P. B. Weigmann, and others for many discussions.
This work was supported by the NSF, Grant No. DMR-
8518163 and AFOSR Grant No. 87-0392.
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FIG. 1. Inverse Hall angle vs T for a pure, untwinned crys-

tal of YBa2Cu307 from Ginsberg [12].

then compatible roughly with the observed ratio of 1/z
and with a ratio of order J/T. The Hall angle will be re-
duced by any compensation effects as well as by the effect
of anisotropy of m and z around the Fermi surface, so
that m, may not have to be as large as quoted here and in
Ref. [2].

The overall magnitude, as opposed to the ratio, is
modified by another moderately large factor. This is that
in order to satisfy the conductivity sum rule with
1/z&, ecru —and, in fact, also appearing in the calculation
of resistivity in our theory and in the marginal-Fermi-
liquid theory [11]—a logarithmic correction is necessary,
so that the formula for cr in terms of dynamic quantities
1S

a =ne z„/m(lnru, . z,„),
so that there is an apparent logarithmic correction to the
conductivity mass. This reduces the observed conductivi-
ty by a factor of 3-4 relative to the value of z seen in the
Drude peak. The same correction reduces E~. This log-
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