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%e present a model of superconductivity with the BCS-like pairing due to Aharonov-Bohm forces.

The gap is proportional to the first power of the small parameter (in which the self-consistent perturba-
tion scheme is developed), as opposed to the BCS class of models where the gap is exponentially
suppressed with the small parameter.

PACS numbers: 74.65.+n

The challenge of high transition temperature in new
superconductors has inspired searches for unconventional
mechanisms of superconductivity. The exponential sup-
pression of T, in the BCS theory [1] is, in fact, related to
the renormalization properties of the dimensionless cou-
pling k. Indeed, the BCS solution for the gap,

A —coo exp( —I /X),

may be viewed as a conventional formula of dimensional
transmutation, where 6 is a physical (renormalization in-

variant) parameter, and the Debye frequency coo plays
the role of cutoff To .keep the physical parameter un-

changed, A, should depend logarithmically on the cutoA,
which is a kind of universal behavior for dimensionless
couplings [2]. In this respect, the problem of high transi-
tion temperature may be regarded as that of finding a
new universality class for the gap parameter. Another
way to identify the universality class is to consider the
scaling properties of the gap h(p) as a function of
momentum. For the BCS models the gap is essentially
independent of the momentum.

These considerations imply that to get solutions which
would be parametrically larger than BCS, one has to con-
sider a theory where, under quite general conditions,
some dimensionless coupling does not acquire logarithmic
renormalization. In this Letter we present an example of
such a theory provided by the Aharonov-Bohm (statisti-
cal) interaction in (2+1) dimensions. This interaction
may be cast into the field-theoretical language by intro-
ducing the gauge field with topological (Chem-Simons)
action. The appearance of the eAective topological gauge
field may be related to a variant of the fractional quan-
tum Hall (FQH) state [3], or the flux phase [4] in two-
dimensional spin systems (the viability of these scenarios
remains, however, still far from being established). On
the other hand, the field-theoretical investigations [5]
have shown, in many cases, the absence of ultraviolet
divergences in the dimensionless Chem-Simons coupling.

%hen all particles have the same sign of charge with
respect to the statistical gauge field, a scenario for super-
conductivity is already widely known under the name of
anyon superconductivity [6]. Let us stress that this is not
what we are going to consider. The superconducting

solution we obtain in the present Letter results from the
gap equation and corresponds to pairing due to statistical
gauge forces in a system where the particles of opposite
charges with respect to the statistical gauge field are
present in equal amounts.

The pairing of oppositely charged anyons was previous-
ly considered in Refs. [7-10], motivated mostly by the
properties of elementary excitations in the FQH state and
the flux phase [11]. However, none of the previous work
has found the unsuppressed gap solution which occurs, as
will be sho~n here, in this problem aE weak coupling.
The gap solution found by Khveshchenko and Kogan [7]
is exponentially small and, contrary to our results, be-
comes zero for the case of purely Aharonov-Bohm in-
teraction [121. Balatsky and Kalmeyer [10] addressed
only the possibility of s-wave pairing. As we will see, for
the s wave the most long-ranged part of the potential, the
Aharonov-Bohm interaction, is not operative. Hence, the
authors of Refs. [7] and [10] rely on the short-range in-
teractions corresponding to the diagonal terms of our Eq.
(12) below. For the weak coupling, this would lead to the
exponentially suppressed gap solution, as indeed obtained
by Khveshchenko and Kogan. The absence of the ex-
ponential suppression found by Balatsky and Kalmeyer is
of no surprise since they were in the strong-coupling re-
gime from the very beginning. The more general possibil-
ity of the pairing with arbitrary orbital momentum l due
to Aharonov-Bohm forces was addressed previously in
Refs. [8] and [9], and in Ref. [9] the enhancement of the
pairing potential for nonzero I was noted.

The primary purpose of the present Letter is to show
that the pairing solution in the case of long-range poten-
tial may differ substantially from the BCS form, Eq. (1).
%'ith this motivation, we will not be very conscious about
the precise origin of our model. %e will see that the
Aharonov-Bohm interaction gives rise to the following
asymptotics of the gap parameter:

where v is the Chem-Simons coupling. The weak cou-
pling corresponds to large x. Thus, the gap proves to be
proportional not to the ultraviolet cutoA' but to the intrin-
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sic energy scale, and the suppression in Eq. (2) is only
power law, as opposed to the exponential suppression in

Eq. (1). This is in accord with the previous discussion of
the renormalization properties of the coupling constant.

When long-range interactions are present in a problem
one expects to be able to construct a consistent approxi-
mation scheme on the basis of the random-phase approxi-
mation (RPA). In the present Letter we construct such a
scheme for the case of a two-component anyon gas. Our
approximation is equivalent to summing up the ladder di-
agrams for the four-fermion vertex in the way familiar
from the BCS theory, but with the important mod-
ification that the gauge propagator forming the step of
the ladder is improved by including the repeated one-loop
fermion bubble. The fermionic Green functions are taken
to be modified by the gap which itself is determined self-
consistently from the gap equation with the potential cor-
responding to the vertex built as above. The most impor-
tant eAect of the RPA bubbles, occurring for the pairing
with nonzero orbital momentum, is the one-loop gnite re-
normalization of the Chem-Simons coupling [9,13] given
by

x„„=rc I/2rr, — (3)

~here I is the orbital momentum of the pair. Thus, for
small momenta along the gauge line, and large I, close to
2zx, the system develops the strong pairing potential. It
is this enhancement of the potential that leads to the
drastic increase in the gap parameter, changing its weak-
coupling asymptotics from the exponential to the power
law, Eq. (2). For the most conventional case 2zx =in-
teger, we find that the system prefers pairing with the or-
bital momentum I =2nrc —1. We prove that, neverthe-
less, our scheme is consistent by showing that all other
corrections to the gap equation, except the bubbles, are
suppressed at least by 1/x (up to logarithms of x) at
I —2m~. The key reason for such behavior is that the
enhancement of coupling is restricted to the narrow re-
gion of small transfer momenta in the scattering of two
(quasi)particles (see below), while for other momenta the
coupling remains weak.

1
oo

a(p) = dp'p' 0(p' —p) ~ + e(p —p')
4na.m ~ 0 p'

For l=0 the potential vanishes due to the antisymmetry,
and for I (0 the interaction is repulsive.

To find the scaling properties of the gap function with
respect to the momentum, it is convenient to deduce the
diA'erential equation from Eq. (8),

2
p'6"+p~+ -I' h=o.

27gir m [/2(p)+/2] ~&2

At large rc one can neglect the first term in the brackets
compared to the second one everywhere except for the
nearest vicinity of the Fermi level. Thus, we find the

Thus, we start with the Lagrangian of Ref. [9],

L = —e"'A 8 Ai
lC

p v

+ P /80+G' Ao 8 i —o,A

where the statistical coupling x is taken positive and
large, the components of the fermionic doublet
=(y+, y —) have opposite charges with respect to the
statistical gauge field A, and e(k) is the (quasi)particle
dispersion law below taken to be e(k) =k /2m —eF. The
statistical gauge interaction is attractive for
(quasi)particles of opposite statistical charges with
nonzero relative orbital momentum l having the same
sign as x (Refs. [8] and [9] and below). [The attraction
exists also for equal charges, but in that case the most
long-range part of the potential will be screened by the
combined action of Debye and Meissner eA'ects for the
statistical field, as explained after Eq. (13) below, and the
gap will be suppressed. So, we consider the former case
in what follows. ] The standard gap equation reads

d ' ~p'
' 4 (2 )' ~~ ( '+tP t')'~' '

Though we have already advocated the necessity to in-
clude the RPA bubble corrections in the pairing poten-
tial, it is useful to consider first the potential without
these corrections. We refer to such a potential as a tree
one (the tree gauge propagator is used), as opposed to the
renormalized potential which is the one with the above
corrections included. In the tree approximation the pair-
ing potential is

2i ~ijP(Pq 2i sin 0
Uap, p) =

am (p —p')2 xm p/p'+p'/p —2cose '

&(P) =&0(P/PF)', P (PF '

~(P) =~o(PF/P)', P & PF,
which show that the gap indeed scales nontrivially, and
the integral in Eq. (8) converges. Nevertheless, in the
tree approximation the magnitude of h, is exponentially
small in 1/x, by the standard argument. According to
our general reasoning, this should imply that the tree ap-
proximation is insufticient in the pairing problem, and we
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where p = p (cosp, sing), p' p'(cosp', sing'), 8 =p
—p'.

Consider pairing with the orbital momentum I,

a, =a(p)e"~, (7)
where h(p) may be taken real. Then the angle integra-
tion in Eq. (5) may be carried out explicitly and yields,
for I) 1, the integral equation

(
&(p')

(8)
p [~'(p')+&'(p')] '"
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have not accounted properly for renormalization of the
statistical interaction. We now do so.

The enhancement of the pairing potential is due to the
partial cancellation of the bare topological term K by the
induced one [9,13], see Eq. (3). Clearly, for large rc the
system prefers pairing with large orbital momenta
1—2trx [14]. Note that, with the potential of the form
Eq. (6), the integral in the gap equation (5) is saturated,
at large 1, in the narrow region of momenta ~p' —

p~
~p/l.

As verified a posteriori by the solution, see Eq. (2), for

p =pF this corresponds to the region of small momenta q
along the gauge line, vF ~q~

+ 5, precisely where the renor-
malization of K takes place. Hence, one can understand
the eA'ect of this renormalization by simply substituting
tc„,„ instead of x in the potential Eq. (6). In this way we
obtain

EF

1 sinh(2trtc„, )
'

while the asymptotics Eq. (10) remain unchanged. For
small tc„„„(which the system chooses itself by adjusting 1)
the exponential suppression of the gap disappears. As
follows from Eqs. (3) and (11), the preferred value of the
orbital momentum is the integer part of 2zK, except for a
somewhat subtle case 2+x =integer, when the preferred
value is actually l =2xx —1; see discussion after Eq.
(13). Also, the calculation of the critical temperature
from the equation for the four-fermion vertex in the
ladder approximation [15], but now with the RPA im-

proved gauge interaction, yields the essentially un-

suppressed value of the same form as Eq. (11), T„—Ao.

In particular, for 1=2trtc —
1 (possible when 2trtc=in-

teger), neglecting the temperature dependence of tc„,„, we
have obtained numerically the estimates h,o~eF/1 and
2ho/T, +2. The latter ratio is smaller than the BCS
value 3.52 [15], though our number (not the order of
magnitude) may be changed by the temperature correc-
tions to Kren.

Now let us see that the previous analysis is indeed con-
sistent, in a sense that a11 other contributions to the pair-
ing potential, besides the tree-RPA ones, are suppressed
by 1/x. The omitted terms are of two types. First, there
are nontree non-RPA contributions to the potential.
Second, the RPA graphs in the gauge-field propagator in-
duce other terms bilinear in the gauge field, in addition to
the topological term. In fact, both types of contributions
are suppressed for one and the same reason. Namely, all
these new interactions appear to be short ranged as com-
pared to the Aharonov-Bohm RPA improved one. Let us
start with the second type of corrections since, if large,
they would enter also non-RPA contributions of the first
type. In the Coulomb gauge, the gauge-field polarization
operator II is a 2X2 matrix in the space (Ao,f) with

A; =e;, tlif, and, as established previously [9], in the static

long-range limit it reads

II(q) =
—Aq +O(q )

Biq +82q +O(q )

B~q +8&q +O(q )

Cq'+ O(q')

(12)

The coefficient 8~ is the induced topological term enter-
ing Eq. (3) [17]. It is seen from Eqs. (12) and (13) that
at l&2trx the pairing interactions mediated by the (00)
and (ij ) components of the gauge field are both nonsingu-
lar in q=p —p', that is they are 1/r in the coordinate
space, while the Aharonov-Bohm interaction is 1/q, that
is 1/r [18]. The case 1=2trx (possible when 2trtc=in-
teger) is, however, exceptional. Then, the topological
term in the eA'ective action cancels completely, and both
the (00) and (ij) components of the gauge propagator
behave as 1/q for small q. But now their contribution to
the gap equation (5) diverges at p =p', leading to the ab-
sence of any nontrivial solutions. Thus, the system
chooses pairing with l close but not equal to 2zx. Note
that for the pairing of equal statistical charges the diago-
nal terms in Eq. (12) would be O(1) (Debye screening)
and O(q ) (Meissner screening), respectively, so that nei-
ther of the propagator components (including the
Aharonov-Bohm one) would be long ranged [19]. As for
the first type of corrections, the argument essentially fol-
lows that of Gell-Mann and Brueckner [20] showing that
the non-RPA graphs are at most logarithmic in ~p

—p'~.

We now should explain why it is instructive to study
the singularity of the various contributions to the poten-
tial in Eq. (5) in the limit when ~p

—p'~ goes to zero. The
point is that, as we have seen above, only the large angu-
lar momenta l —x. are essential in the gap equation, and
the Riemann-Lebesgue lemma [21] says that for any
integrable function of angle 0 between p and p',
limt f V(0)e" d8=0. Hence, all nonsingular (and
logarithmic) contributions are suppressed. In fact, this
suppression is at least 1/1 up to logarithms. Note that the
suppression takes place also for the tree-RPA result
everywhere except the point ~p~ =~p'~. But at this point
all angular harmonics of the potential indeed come with
equal weight, as seen from Eq. (8), and this leads to the
uniformly unsuppressed solution for the gap.

In conclusion, we have shown that the presence of
long-ranged pairing interaction combined with the non-
renormalization property of certain couplings may lead to
new patterns in weak-coupling asymptotics of the gap
function and critical temperature. We have developed a

where the one-loop values of the coefficients are [9,16]

&F 1 l l &'F
2

8]=, B2=-
2x ' 2z

(13)

C= 1 1—+l2
4am 3
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self-consistent scheme for the particular case of Ahar-
onov-Bohm (1/r) interaction in (2+1) dimensions, the
role of expansion parameter being played by the inverse
angular momentum of a pair. Though we do not claim
any concrete applications in the present Letter, we hope
that our results may form a new framework in studies of
high-temperature superconductivity.
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