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We study a class of variational wave functions for strongly interacting one-dimensional lattice fer-
mions in which correlations among the particles are specified by a single variationa1 parameter. We find

that the wave functions describe the ground-state properties of the one-dimensional t-J model remark-

ably well over the entire phase diagram in which interaction strength and density are varied. Specifically
the wave function describes a Tomonaga-Luttinger liquid at low J/t, a phase-separated state at large J/t,
and a stable state with infinite compressibility between these phases at low densities.

PACS numbers: 71.45.Gm, 71.10.+x, 71.30.+h

The t Jmodel -was originally introduced to describe
the motion of holes doped into a Mott insulating state
[1-3]. The model is nontrivial even in one dimension,
and it is important to develop a complete description of
its phase diagram. The 1D t-J Hamiltonian is written in

the subspace of no doubly occupied sites as

H= —tg(c;t~;~) +H.c.)

+Jg (S; S;+ )
—

—,
'

n;n; p () .

The model is exactly solvable only at J/t =0, where it is

equivalent to the U=ee Hubbard model, and J/t =2
[4,5]. In both of these cases the ground state belongs to a
general class of interacting Fermi systems known as
Tomonaga-Luttinger (TL) liquids, which exhibit power-
law singularities in the momentum distribution at the
"Fermi surface" [6,7]. Additionally, at large J/t the at-
tractive interaction term dominates the kinetic energy
and the model phase separates in order to optimize the
Heisenberg exchange energy in (1).

To obtain the complete phase diagram of the model,
approximations must be used at other values of J/t For.
example, Ogata et al. [8] have applied exact diagonaliza-
tion to small systems to investigate the phase diagram.
They find that indeed the model behaves as a TL liquid
for all values of J/t below the critical value for phase sep-
aration and have hypothesized that a third phase of
bound singlet pairs may separate the other phases at very
low density.

In this paper we use a variational technique to investi-
gate the ground-state properties of the t Jmodel. This-
method is approximate, as we are limited by our varia-
tional subspace, but we are able to work with much larger

systems and can practically eliminate finite-size effects.
We find our results are remarkably reliable where corn-
parison with exact results is possible, and we find some
important differences with previous numerical work else-
where in the phase diagram.

We study a variational many-fermion state constructed
from a Jastrow-Slater wave function

W(r;t, r; ) = IF(r;, r; ) I
"PdS(r )S(r; ),

I+I = H exp( PV,j), (3)

where V~. = —(I/P)(v+ & + 2 o;nl)lnIz; —ziI. Here z;
=exp(lhkr;) with Ak =2rr/L for a system of L sites and
a; =+ 1 is the spin index. Positive values of v corre-
spond to an additional repulsive interaction while nega-
tive values are attractive. For v& —

2 the average in-

teraction is attractive, and the system phase separates.
We use the variational quantum Monte Carlo method

to evaluate the energy and other observables using the
wave function (2) [11—13]. With a determinantal Jas-
trow factor, it is simple to calculate the derivative of any
observable with respect to v directly, which greatly helps
determination of the optimum v for a given value of J/t.
In previous work [10] we found that for J=O, the op-
timum value of this variational parameter ranges from
v=1 at low densities to v=0.5 close to half filling. At

where S(r;) =Det[e' '"'] is a Slater determinant of sin-

gle-particle plane-wave states and Pd =+;(1 —n; t n; i )
projects out all states with doubly occupied sites. We re-
strict ourselves in this work to a spin singlet and therefore
have equal numbers of up and down electrons in the
Slater factor.

The Jastrow factor IF(r;t, r; ) I' in (2) uses the modulus
of a Slater determinant in al'l electron coordinates to
correlate the particles [9,10]. This factor is manifestly
symmetric under all permutations, thus preserving the
spin-singlet nature of the unmodified state. A positive
value of the variational parameter v induces a smooth
correlation hole between all particles. Classically, v

specifies the effective temperature or strength of these
correlations. On the other hand, a negative v induces an
attractive correlation between particles which competes
with the Pauli repulsion in the ground state. Ultimately,
for suSciently negative v, this attraction overcomes the
statistical repulsion, and phase separation occurs.

The nature of the wave function for various values of v

can be studied quantitatively by mapping it onto a classi-
cal two-component hard-core gas with logarithmic in-

teractions [3]. The modulus of (2) can be rewritten with

the projector omitted as
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FIG. 1. The phase diagram of the t-J model as determined
by our variational wave function. The phase-separated state is
marked by v( —0.5, and other regions display the appropriate
range of v. At densities above n =0.45, the transition to phase
separation has a discontinuous jump in v shown by the thick
solid line. At lower densities, v= —0.5 for a range of J/t before
phase separation occurs. The dashed line shows where v=0,
the Gutzwiller wave function. All systems contained at least
100 electrons and 20 holes. Points beyond n =0.9 are extrapo-
lated.

FIG. 2. The energy as a function of variational parameter v

for various values of J/t for 150 particles on 1500 sites. The op-
timum v decreases continuously with increasing J for J/t
~ 2.76. Once v = —

2 is reached, this value remains the
minimum for 2.76 & J/t & 3.09. Values for v ( ——,', the
phase-separated state, are extrapolated to the infinite-system
limit to remove edge effects and thus are constant. This regime
is the minimum for J/t )3.09.

Gutzwiller-projected Fermi sea, which is well known to
've an excellent approximation to the exact Heisenberg
ound state [3,16].
The boundary between these two regions is interesting.
r densities above n = 0.45, there is a first-order transi-
n in which v jumps discontinuously to the phase-

parated v & —
—, region. However, at lower densities v

creases with increasing J to v= —
2 and then remains

ere over a finite range of J/t before phase separation
curs. We find two second-order lines bounding this

phase which terminate at a tricritical point at
0.45. Figure 2 shows this behavior in more detail

th a plot of energy as a function of v for various values
J/t at density n =0.1. Starting from small J/t, the en-

gy minimum moves to lower v as J increases. The opti-
ized exponent remains at v = —

2 over the range
6 & J/t &3.09, beyond which the phase-separated state
& ——,

' ) becomes the ground state. In the phase-
parated state, the energy is independent of v in the
finite-system limit, and the energy contours for v

are Aat.
Exactly at v = ——, we can write the wave function (2)

quarter filling (n =0.5), v =0.75. gl

The phase diagram of the t Jmodel as-determined by gr
our wave function is shown in Fig. 1. %e see that three
distinct phases occur. For v & —

2 the system behaves
as a TL liquid with a power-law singularity in the
momentum distribution at the Fermi surface. In this
range, we find that for v) 0 spin correlations dominate
the long-range behavior of the system, while for v&0 th
singlet pairing correlations dominate, in agreement with oc
TL theory [8,14]. The dashed line shows where the vari-
ational parameter passes through v =0 and (2) reduces to n =
the Gutzwiller wave function. This line converges to wi

J/t =2 at low densities and remains relatively close to of
this point over a broad range of densities. It has been er
shown independently [15] that the Gutzwiller wave func- m
tion is an excellent trial wave function at J/t =2. 2.7

For v & ——, the wave function (2) describes a spatial (v
condensation of the particles on the chain. The Jastrow
factor serves merely to bind the particles —the kinetic en- in

ergy vanishes while the spin dynamics are described by
the remaining part of the wave function, namely, the

as

(4)

where the i's (j's) span the /V up (down) electrons, and the k's span all electrons. In this form we see the wave function
closely resembles the semion wave function gauged to the fermion representation which was studied in several recent
two-dimensional problems [17,18]. From the classical gas analogy one may conclude that the compressibility of this
phase is infinite; we examine this property in more detail below.

Correlation functions obtained from (2) are shown in Fig. 3. For positive v, or small J/t, the spin-correlation function
exhibits a sharp cusp at 2kF, indicating that spin correlations at 2kF are dominant at long length scales. As v decreases
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FIG. 3. The spin and superconducting correlation functions
for various values for v for the quarter-filled band. The cusp in
S(k) at 2kF =n/2 is suppressed as v decreases while the k =0
pairing cusp is enhanced. The system contains 50 electrons on
100 sites.

FIG. 4. The momentum distributions for the quarter-filled
band. The power-law singularity at kF =x/4 steepens as v ap-
proaches v=0 from both the positive and negative sides, and
there is a true discontinuity at the Fermi level only at v=0.

with increasing J, this cusp is suppressed while a cusp at
k =0 is enhanced for correlations of the pair amplitude.
These dominate for v&0. All correlation functions in

this problem can be characterized by the single quantity
K~ [19-21]. Specifically, the spin and superconducting
pair-correlation functions decay asymptotically as

(S-(F)S (0))—A ~r +Abc-os(2kFr)r

(b '(F )b(0) & -8 iF
"+""'+&2 cos(2k, r )r

where b(r) =(I/J2)(c„tc„+~i —c,tc, +~1). We find that
decreasing v corresponds to increasing K~, with the v=0
(Gutzwiller) state having K~= 1, the value at which spin
and pair correlations have equal strength. Additionally,
K~(v=0.75) =0.43 and K~(v= —0.5) =00. The latter
value was obtained from finite-size scaling of the k =0
pairing cusp and confirms the infinite compressibility of
the special v= ——,

' state [14].
Finally, the momentum distributions are sho~n in Fig.

4. In the TL regime, the momentum distribution exhibits
a power-law singularity near kF of the form

n(k) = (k n) —FC~k —kF'sgn(k —kF),
where a = —,

' (K~+ 1/K~ —2). At v =0.75 it shows a
singularity with a =0.19 at kF. This singularity sharpens
and evolves into a discontinuity exactly at v=0, and then
decays again for negative v. For v= —0.5, e=~ and
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n(k) is analytic at the Fermi surface.
In conclusion, we have introduced a variational wave

function that allows us to explore the ground-state prop-
erties of the t-J model on the one-dimensional lattice.
We find a first-order phase transition between a correlat-
ed "metallic" state and the phase-separated state with in-
creasing J/t at high densities, while at low densities we
obtain a third condensed state with infinite compressibili-
ty. The detailed nature of the spin correlations in this
third phase is interesting. It has been suggested that a
spin gap appears in this phase, but the present treatment
is not able to confirm this possibility. We actually ob-
serve a linear spin structure factor at small k in Fig. 3 for
all v, indicative of a gapless spin-liquid state. We are
presently working to expand our variational space to
check for instabilities in this region.

This work was supported by National Science Founda-
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