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Multiscaling is shown to be a consequence of multifractality when a lower cutoA t. is introduced in cal-
culations of correlation functions. After a suitable rescaling, the correlation function data for difrerent
values of e seem to fall onto a single curve. In the multiscaling regime, however, we show that there is
not a unique functional form at varying e, but a spread very close to a single curve. For each e, this
curve can be computed analytically in terms of the f(a) spectrum which characterizes the multifractal.
Part of this spectrum can thus be obtained by computing only one moment of the weights at t. &0.

PACS numbers: 64.60.Ak, 05.45.+b, 05.90.+m

The multifractal formalism [1,2], which originated in

the context of turbulence and chaotic systems [3], has be-
come a standard tool to analyze phenomena observed in

fractal aggregates, semiconductors, disordered systems,
and so on [4]. A multifractal object is characterized by a
continuous spectrum of indices, f(a), which describe the
global scaling structure. To determine this spectrum one
usually computes the scaling behavior of generalized
correlation functions,

Cq(l)-I' ') for l 0,
as a function of the length scale l. Then the spectrum
follows from the Legendre transformation r (q)
=min, faq —f(a)]. In physical systems, the scaling rela-
tion (1) holds only down to a characteristic cutoff in the
length scale, after which inc~(l) vs Inl is no longer linear.
The cutoA scale can be varied by an external parameter
such as the Reynolds number in turbulence. In studies of
power spectra of temperature signals in convective tur-
bulence [5] and of distribution functions for avalanches in

sandpile models [6], KadanoA' and co-workers have pro-
posed the existence of a single functional form onto which
various curves can be mapped, by a so-called multiscaling
[7,8] transformation. One then finds a continuum of
scaling exponents by plotting 1n[C~(l)/Co]/ln(R/Rp) vs

In(l/lo)/ln(R/Ro), where R is the control system parame-
ter and Co, Ro, and l 0 are fitting constants.

Our objective is to justify this procedure, by generaliz-
ing the arguments of Frisch and Vergassola [9], who
showed that the energy spectrum of turbulent Bows ex-
hibits multiscaling in an intermediate dissipative regime
as a consequence of the existence of a spectrum of viscous
cutoA's [4] in the multifractal model for turbulence.

In this Letter, we extend their idea to a general formal-
ism valid for all kinds of multifractals by including the
eA'ect of a varying cutofT on the evaluation of correlation
functions Cq. A cutoA' e is imposed on the weights of the
elements (say, e.g. , boxes A; of size I) of a partition of a
multifractal set. In practice, we disregard a box A; in the
sum C~(l) =glA, lp;(l)~—the correlation function of or-
der q —if its probability p;(l) is less than e. At varying e

fl')p(a)daC, (l) =„
-l' for I 0, (2a)

where p(a) is a smooth function independent of l, and
r(q) =qasp f(asp) is given by the saddle-point esti-
mate, i.e., by the value asap at which the function aq

f(a) reaches —its minimum. Therefore, asp is obtained
by inverting the relation q(a) =f'(a). We observe that
each moment picks up a particular index value since one
has asp(q) =r'(q). The higher the moment q, the small-
er the index a, i.e., q(a) is a nonincreasing function of q
and f(a ) is convex.

However, in the presence of a cutofI e, an empty box
cannot be distinguished from a box with probability less
than e; a cutoA thus makes it impossible to determine the
large a values corresponding to the less probable regions.
If p; ( E= l', then the boxes with—indices a ) a=inc/1nl
are not present in the sum for Cq, since they are assumed
to be empty, and the upper integration limit in (2a) be-
comes

C, (I,~) = I I' I"p(a)da-
~ +min

(2b)

This does not modify the saddle-point estimate if esp

one thus computes a series of curves, C~(l, e). By the
multiscaling procedure, they fall onto a spread of curves
which are very close to a single scaling curve for small e.
The main point of this Letter is to show that it is possible
to compute these curves analytically in terms of the f(a)
spectrum. This allows us to reconstruct a part of f(a)
without calculating the dimension function r(q); it is

sufhcient to compute Cq for only one particular moment q
at finite values of e.

The standard multifractal approach can be summa-
rized as follows. In self-similar sets one defines the scal-
ing indices a; of the probability measure p;(l) —l ' of a
box A;. By the multifractal ansatz [1,2], the number of
boxes with index a; 6 [a,a+da] is I p(a)da, and the
sum for the generalized correlation function Cq can be
written as
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=r'(q) is still inside the integration interval. However,
when asp(q) is larger than a, the minimum of the func-
tion aq —f(a) in the integration interval is reached at
the upper limit Q. We thus obtain —10

Cq(l, e)—
lt' if Q & Qgp,

Iq~«, ~) —f(~«, I)) f
(3)

—20
The multiscaling for a ~ asap is a pseudoalgebraic law

[9], since it exhibits a power law with a slowly varying
exponent, proportional to the logarithm of the length l.

We define the rescaling procedure by considering Fq:—lnCq/in@ as a function of O=lnl/In@= 1/a,

—30—

Or (q) if 0 & 1/asp
F, (0) =

q
—Of(1/0) if 0~ 1/asp. (4)

0
—40 I

—40
I I I I I I I I I I I I I I I 1 I I I

—30 —20 —10

ln8
The first regime is the single-scaling regime where the
function Fq(0) is a straight line with slope z(q). In the
second regime Fq bends over to the multiscaling region,
where the correlation functions for varying values of e are
determined by the f(a) spectrum.

The above argument uses only the saddle-point approx-
imation and in the next step we also take the leading
corrections into account. These corrections cannot be
neglected in the multiscaling regime because when a
& asap the first derivative does not vanish in the expansion

of the exponent in (2) around a. For a & asp one there-
fore has

FIG. l. lnC2 vs lnl for the two-scale Cantor set with P= —,
'

and p~ =0.6. The fractal dimension of the set is D~ = —r(0)
=ln2/ln3, and a;, =lnp~/lnP. The straight line has slope r (2)
=0.595. . . . The data are obtained for a=10 (crossed cir-
cles), @=10 (crosses), and e= l0 " (squares).

tervals, each of which covers a fraction P of the previous
interval. One assign a probability p] to one of the inter-
vals and p2=1 —p] to the other. At the nth stage of the
construction, the correlation sum takes the form (l—=P")

C, =l'-/"I, (a.,„,a),
where, to first order in a —a,

n
( )Igpmq(n —m)q

m=],m.
(8)

I lq —/'(a) 1 la —al ( )dIq(a;„,a) = (5)

Note that the first derivative d[aq f(a)]/da=q
—f '(a) & 0 for a & asp(q) and vanishes for a =asp(q).
Using the relation l =e' ' we finally obtain

[f'(a ) —
q ] (a —

am;n )/a

Iq(a;„,a) = R(a) .
I in&I [f'(a) —q]/a

(6)

Fq (0) =q
—Of (1/0) +

inc
(7)

To illustrate how the formalism works in practice, we
consider examples of two-scale Cantor sets where f(a) is
known exactly [2]. We generate sets where, at every
stage of the construction, an interval is split into two in-

In the limit a a;„, Iq(a;„,a) must approach unity,
because when only boxes with a=a;„have survived the
cutofT procedure, one has a homogeneous fractal where

Cq I " '" . In this limit the saddle-point calcula-
tion [3] becomes exact. This requirement implies that the
most singular part of R(a) is 1/(a —a;„), so we assume
R(a) =1/(a —a;„) in (6), which is sensible at least for a
not too far from a;„. Therefore, for 0~ 1/a, there is an
additive correction to (4), so that

With the cutoA' e, Cq(l, e) is obtained by omitting terms
in (8) whose probabilities p( pq are less than e. Figure
1 shows plots of lnCq(l, e) vs Inl for various values of e.
The deviations from the linear scaling take place in a
length scale range which increases with the cutoA'. Fig-
ure 2 shows the rescaled data, plotting 1nCq/inc vs Inl/In@
for q =2 [Fig. 2(a)] and q = —2 [Fig. 2(b)]. We get a
very good agreement between the data and the theoretical
prediction, Eq. (7). Our estimate of R(a) fails only for a
close to Qqp. In other words, we expect that the function
Fq(0) turns away from linear behavior at 0* given by

I/O asp ln[R(asp) (asp —a .)]/II«l,
and not at 0* =1/asp. Again, it is important to note that
the multiscaling curve (4) without the cutoA'-dependent
corrections (7) is only a reasonable approximation. Nev-
ertheless, the leading corrections (7) are so slightly
dependent on t. that they are well approximated by a sin-
gle curve in the range of cutoAs considered; see Figs. 2
and 3.

As an additional, less trivial test of the formalism, we
have applied it to the accumulation point of period-
doubling bifurcations [10]. Consider the set of points
generated by the dynamical system x„+(=X(1 —2x„2) at
X =0.837005 134. . . . The corresponding f(a) spectrum
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I I FIG. 3. Fq(0) =lnC2/lne vs 0=In(l/10)/lne for the period-
doubling repeller. The data for C2(l, e) are obtained at
e =0.0015 (squares), e=0.003 (crosses), and e=0.006 (crossed
circles). The lines are the same as in Fig. 2, with r (2) =0.495.
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FIG. 2. (a) Multiscaling transformation for the data of Fig.
I: Fv(0) =InCv/Ine vs O=lnl/lne, with q =2. The straight
dash-dotted line is r(q)0, with r(2) =0.595. . . , asp=r'(2)
=0.578. . . . The multiscaling regime is expected in the interval
0* = I/asp =1.728. . . up to 0,, =1/a;„=2.150. . . . The
dashed parabolic line is the curve q

—Of(1/0) using the explicit
form of the f(a) spectrum for the two-scale Cantor set. The
solid lines are the leading correction (7), corresponding to
t. =10, 10, and 10 ". They are practically indistinguish-
able. (b) For the same Cantor set, F~ (0) = lnC~/In e vs

O=lnl/lne, with q
= —2. The data are obtained for e =10

(crossed circles), e=10 (crosses), and e=10 " (squares).
The lines correspond to those of 2(a) where now r ( —2)
= —2.002. . . , asp =r'( —2) =0.7204. . . , and 0* = I/asp
=1.387. . . .

is known to high precision [2]. We generate 10 points,
partition the set into boxes of size 1, and estimate C2(l, e)
for various values of e. Figure 3 shows InCq/Ine vs

In(l/lo)/Ine, where lo is a parameter such that C2(l)
=(I/lo)' in the linear part of the scaling. We have
used e values which are rather large with respect to the
case of Fig. 2. However, the agreement with the theoreti-

cal prediction (7) is quite good.
In dynamical systems there is only one adjustable pa-

rameter, i.e., lp which in the two-scale Cantor set is equal
to unity by construction. In general physical phenomena,
one, of course, has to consider fitting parameters [5,6,8]
Co, eo, lo, defining the multiscaling as ln[C~(l)/Cp]/
ln(e/eo) vs ln(I/lo)/ln(e/eo), but for normalized probabil-
1tles Cp = 1. The formalism is at present being applied to
the energy spectrum of turbulence [9] in a shell model
[11]. The initial results are encouraging and will, togeth-
er with details on the period-doubling investigation and
other results, appear in a forthcoming publication.

In conclusion, we have related the multiscaling ob-
served in multifractals to variations in a physical cutoA
parameter. Our main results are condensed in Eqs. (4)
and (7) which indicate that the correlations for various
values of the cutoff e are well approximated (although in

no limit exactly) by a scaling curve, determined by a por-
tion of the f(a) spectrum. Finally, it seems to us an open
and very promising problem whether one can determine
the underlying multifractal structure (if any) when multi-

scaling is empirically observed in a physical system, as in

Refs. [5], [6], and [12]. However, it is not clear whether
multiscaling must be always related to multifractality or
is a much more general phenomenon.

We are grateful to T. Halsey, L. KadanoA, L.
Pietronero, I. Procaccia, and M. Vergassola for interest-
ing discussions. Also thanks to P. Cvitanovic for stimu-
lating remarks and a careful reading of the manuscript.
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