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Zeeman Splitting in Pd and Pt Calculated from Self-Consistent Band Structure
Including an External Magnetic Field
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Fully self-consistent band-structure calculations have been performed for palladium and platinum.
The eAective Hamiltonian contains exchange, correlation, and relativistic eA'ects as well as the external
magnetic field. The anisotropy of the cyclotron-orbit Zeeman splitting agrees well with experimental
data from de Haas-van Alphen measurements. The calculated total susceptibilities also agree with the
experimental values.

PACS numbers: 71.70.Ej, 71.25.Jd, 75.20.En

The Zeeman splitting of cyclotron orbits has been
thoroughly investigated by means of the de Haas-van Al-
phen (dHvA) eA'ect. In the alkali metals [1] the Zeeman
splitting is found to be isotropic, but the g factor deviates
from the free-electron value of 2. On the other hand, in

Rh [2], Pd [3,4], Ir [5], and Pt [6,7] the cyclotron-orbit g
factor (g, ) is found to be strongly anisotropic, and it is

also known that in Pd and Pt the average g factor is

large. The g, factor in the noble metals [8] also shows a
strong anisotropy. Previous experience indicates that
simple band-structure models with the magnetic field tak-
en into account by first-order perturbation theory cannot
explain this behavior.

To our knowledge, no calculations aiming at a total
picture of the Zeeman splitting have been performed.
MacDonald [9] has calculated average g factors for the
transition metals including spin-orbit coupling, but with-
out exchange and correlation eAects. Jarlborg and Free-
man [10] have calculated g factors for certain k points on
the Fermi surface of Pd, neglecting spin-orbit coupling.
For comparison with dHvA experiments, cyclotron-orbit
values must be calculated. This has been done, including
spin-orbit coupling but without enhancement of the Zee-
man splitting from exchange and correlation, for the pla-
tinum group metals [11], noble metals [12], and alkali
metals [13]. These studies show that spin-orbit coupling
is the dominant source of the anisotropy for most Fermi-
surface sheets and indicate that exchange and correlation
enhancement must be included in the model in order to
also get the right order of magnitude of the Zeeman split-
ting. In the present paper results for Pd and Pt are
presented using a calculational scheme where the external
magnetic field is included in the self-consistent cycle,
which allows the spin-dependent exchange-correlation po-
tential and the spin-orbit coupling to aAect the Zeeman
splitting.

In an external magnetic field, a Fermi-surface sheet in
a paramagnetic or diamagnetic metal is split into two
slightly diAerent surfaces. The interference between the

two dHvA signals of these sheets will then appear as a
modulation of the amplitude, according to a cosine func-
tion with argument xR, where

R =g, . m, ./2, (2)

where rn, . is the effective cyclotron mass in units of the
free-electron mass. In this paper, R is calculated and
compared to experimental data, as it is unaAected by
electron-phonon elects [14], in contrast to g,. where the
uncertainty of the electron-phonon coupling parameter
makes comparisons more dificult.

The spin-polarized, self-consistent band structures were
calculated using the method of linear muon-tin orbitals
with atomic-sphere approximation (LMTO-ASA) [15]
and the local-spin-density approximation (LSDA). The
canonical structure constants and combined correction
terms were calculated in a coordinate system with the z
axis parallel to the direction of the magnetic field. As the
point-group symmetry is reduced when a field is applied
in an arbitrary direction the k points must be sampled
over at least half the Brillouin zone (BZ). Because of
spin-orbit coupling, the amount of m~ character in the
wave functions varies from one-half of the BZ to the oth-
er. As this aAects the orbital magnetic moment it turned
out that integration over the entire BZ was necessary in
order to get the accuracy needed. The number of k
points used was 17632, corresponding to a density of 505
k points per 4'& of the BZ. The band Hamiltonian con-
tained a kinetic-potential term as described in Ref. [15],
a spin-orbit term, and a Zeeman term [pqB (1+2s)]. A
derivation of the matrix elements of the two latter opera-
tors will be given elsewhere.

R= 2' B

A] and A2 are the extremal cross-sectional areas of the
two split surfaces perpendicular to the magnetic field, and
8 is the applied field strength. In moderate fields (i.e. ,
for small splittings) R can be approximated by
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In order to calculate a new potential for the band
Hamiltonian the spherically averaged charge and spin
distributions, constructed from the total and mI- and
spin-projected state densities, were used together with the
frozen-core charge distribution and the spin-dependent
exchange-correlation potential according to von Barth
and Hedin [16]. To this end, the Dirac equation without
spin-orbit coupling was solved, thus including the mass
velocity and Darwin shifts. This way of treating relativis-
tic effects is often referred to as the scalar relativistic ap-
proximation [17].

This procedure was iterated until self-consistency was
achieved for each field direction and each field strength.
The convergence criteria were that the center of gravity
of each mI- and spin-projected band should not differ by
more than 15 pRy, and that the average of all differences
should not be larger than 10 pRy, between two successive
iterations. In a field of 10 T the smaller amount of ener-

gy corresponds to a change in g factor of 0.2. Angular
momenta larger than 2 were neglected, in order to save
computing time. However, preliminary calculations in-

cluding f orbitals show that the occupancy of the f states
is less than 0.2 electron per atom, and the anisotropic be-
havior is affected very little. A small increase in the total
susceptibility is also noticed.

The self-consistent band Hamiltonian was then used to
calculate the split extremal cross-sectional Fermi-surface
areas, by varying the length of the k vector in a specific
direction in the plane perpendicular to the field until the
Fermi energy was found with an accuracy of 1 pRy, for
each of the split bands. The areas were then obtained by
numerical integration of ~kF ~

around an orbit with a step
in angle of 2.5 . The cyclotron-orbit mass was calculated
using the integral

2am, *.

Amp

lated spin magnetization in Pd is 0.0092pti per atom, and
the orbital magnetic moment is 0.0016pg per atom, giv-
ing a total susceptibility of 8.6x10 . For Pt the corre-
sponding moments are 0.0025pq per atom and 0.0011pg
per atom, and the susceptibility is 2.8&10 . Compared
to the experimental low-temperature values of 10.5
x10 " and 3.0x10, respectively, this must be called
good agreement. The Pauli susceptibility, popaD(EF),
where D(EF) is the density of states at the Fermi level, is
1.1 x 10 in Pd and 8.0x 10 in Pt.

It is interesting to note that the enhancement of the
calculated susceptibility does not only come from ex-
change-correlation effects on the spin magnetization, but
also to a large extent from the spin-orbit coupling. The
orbital moment contributes 15% to the total magnetiza-
tion in Pd and 30% in Pt. In both metals the spin suscep-
tibility shows an anisotropic behavior of approximately
2%. This anisotropy could be an effect of the numerical
procedure, but appeared too systematic to be a calcula-
tional error, with the largest value of the susceptibility in

the [100] direction, and smaller values in [110] and
[111].

The calculated curve for R on the 16 surface in Pd is

shown in Fig. I, together with the experimentally deter-
mined anisotropy [3]. Figure 2 presents calculated and
experimental [3] R values for the a5 orbit in Pd. Com-
parison with Ohlsen and Calais [11],where spin-orbit in-

teraction is included but no exchange-correlation effects
are enhancing the Zeeman splitting, shows that the im-

provement in agreement with respect to anisotropic be-
havior, when comparing to experiment, is small but sig-
nificant. As for all studied orbits, the Zeeman splitting is

several times larger than the values presented in Ref.
[11]. Regarding the g„ factor on the X4 pocket in Pd,
the differences in anisotropic behavior are larger (Fig. 3).

Jl

where mp is the free-electron mass. kI;. v& was approxi-
mated with

10
(110)

I

(001)

E (kF +Ak) —E (kF —Ak)

2I&kl

with 4k=10 (2'/a), where a is the lattice constant, in

the same direction as kF. The split areas were then used
to calculate R according to Eq. (1). The effective masses
can then be used to calculate g, from Eq. (2).

The routine was tested with respect to symmetric prop-
erties and linearity with applied field for small fields (up
to 20 T). The calculations were performed for the fcc
structure and a lattice constant of 3.89 A for Pd and 3.92
A for Pt. Complete self-consistent calculations were car-
ried out for several different field directions in the sym-

metry planes with a field of 10 T. The sizes of the
cyclotron-orbit areas compared to the experimental ones
agree within 10%, except for the small X pockets.

With a field of 10 T in the [100] direction, the calcu-

8 i n

0
[001]

30 60
0 (deg)

90/45 0
[110] +(«g) [100]

FIG. 1. Calculated values of R (solid squares) as a function
of magnetic-field direction with the field in the symmetry planes
on the I 6 Fermi-surface sheet in Pd. The experimentally deter-
mined anisotropy from Ref. [3] is also displayed (solid line). In

the plot the arbitrary integer in the experimental result, indicat-
ed on the right scale, has been chosen as 8.
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FIG. 2. R from calculations (solid squares) and experiments
[3] (solid line) for the a5 orbit in Pd. The left panel shows a
(110) plane and the right one a (001) plane. The experimental
data are displayed with the arbitrary integer n equal to 9.
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In the present calculations the value of g, . in [001] is
larger than around the "waist" of the pocket, in contrast
to Ref. [11], indicating that the exchange-correlation
enhancement of the Zeeman splitting is strongly aniso-
tropic, with a larger effect near [0011 than in the (001)
plane. This is in line with experimental studies, in which
a small amount of Ni in Pd has been used in order to in-
crease the exchange-correlation effects [18]. The reason
for displaying g, . rather than R for X4 pockets is that this
change in anisotropic behavior with respect to Ref. [11] is
easier to observe in the curves showing g,

In Pt discrepancies are larger. From Fig. 4, displaying
R on the I 6 surface, it is obvious that the model cannot
reproduce the extremely rapid variations of R in the vi-

cinity of [001] and [110]. There is also a discrepancy re-
garding the value in the [110] direction, where the calcu-
lations show a minimum —as both theory and experiment
indicate in Pd—while the experimental interpretation

0 60 90/45 0
[001] O(«g) [110] C(deg) [100]

FIG. 4. Same as Fig. I, but for platinum with n=3. Experi-
mental results are from Ref. [6].

gives a maximum. For the a orbit, displayed in Fig. 5,
the agreement between theory and experiment is better.
The calculated g, . factor on the X pocket hole in Pt,
shown in Fig. 6, is in general too small. However, the
agreement with experiment [7] with respect to anisotropic
behavior is better than in Ref. [11]. The differences be-
tween theory and experiment are larger on the A pockets
than on the other Fermi-surface sheets. This may be be-
cause the calculated cross-sectional area of this tiny
Fermi-surface sheet is twice the size of the experimental
one, and because the cyclotron orbits on the X pockets
cross the Brillouin-zone boundary.

For the large Fermi-surface sheets in Pd and Pt the re-
sults presented in this work show very good agreement
with experiment. This clearly demonstrates that ex-
change, correlation, and relativistic eAects must be in-

cluded when studying the eigenstates of conduction elec-
trons in external magnetic fields, and that the magnetic
field must be included in a self-consistent way. It is also
shown that the LMTO method in the scalar relativistic
approximation with the spin-orbit coupling in a separate
term, the introduction of the field through the Zeeman
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FIG. 3. Calculated (solid squares) and experimental [4]
(solid line) g, factor on the X4 pocket in Pd. In the derivation
of the calculated values an electron-phonon coupling constant of
1.9 has been used. Two alternatives for the experimental values
are presented, with the arbitrary integer equal to 0 or 2.
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FIG. 5. Same as Fig. 2, but for platinum, and n=3. Experi-
mental results are from Ref. [6].
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FIG. 6. Calculated (solid squares) and experimental [7]
(solid circles) g, factor on the X4 pocket in Pt. The electron-
phonon coupling constant used for the calculated values is 1.5.
The experimental values are presented with the arbitrary in-
teger equal to 0.

term, the LSDA with spherically averaged densities, and
the parametrized exchange-corre1ation potential from von
Barth and Hedin [16] serves as a useful tool for calculat-
ing the electronic structure of metals in external magnetic
fields.

It is worth noting that this model, with the magnetic
field omitted, has given very good results for itinerant fer-
romagnets (see, e.g. , Ref. [17]), although the parametri-
zation of the exchange-correlation potential is most accu-
rate in the paramagnetic region [16]. This suggests that
the approach described in this paper might be useful
across the border to ferromagnetism, in order to study,
e.g. , magnetocrystalline anisotropy, magnetostriction, and
metamagnetic transitions.
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fully acknowledged.
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