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The quantum Hall eAect is due to discontinuities in the chemical potential at certain bulk electron
densities. It has been conjectured that the resulting edge states in some fractional Hall gaps can have an

intricate composite structure which reflects the correlations in the incompressible bulk fluid. We present
direct numerical evidence obtained from exact-diagonalization studies in favor of this conjecture. We
show that the states on the v= —,'fractional quantum Hall edge constitute a two-component system in

which a v= 3 droplet of holes is contained within a v=1 droplet of electrons.

PACS numbers: 73.40.Kp, 67.50.—b

The allowed kinetic energies for electrons moving in

two dimensions in a perpendicular magnetic field are
quantized into Landau levels separated by 6'„where
co, =eB/mc is the cyclotron frequency. The quantum
Hall effect [1,2] occurs in these systems whenever the
chemical potential has a discontinuity (so that the system
is incompressible) at an electron density n which depends
on magnetic field. A system of noninteracting electrons
is incompressible when the Landau-level filling factor
v=n2zl is an integer and the chemical potential jumps
from one allowed kinetic energy to another. (Here
I =bc/eB. ) The quantum Hall effect also occurs at a
series of fractional filling factors [3]; the incompressibili-
ties in this case are due to interactions among electrons in

the same Landau level. It is possible [4,5] to form
many-body states in the lowest Landau level in which no
pair of electrons is ever found in a state of relative angu-
lar momentum (RAM) m —2 only if v ~ I/m. This
property is responsible [6] for the incompressibility and
hence the fractional quantum Hall effect (FQHE) at
v= 1/m. The incompressibility at v= 1

—I/m then fol-
lows from particle-hole symmetry (see below). The fact
that these incompressibilities occur at magnetic-field-
dependent densities requires the existence, in an open sys-
tem, of edge states which evolve with magnetic field in

such a way as to provide the required change in density.
It is this requirement which leads to the fractional quan-
tum Hall effect [2,7] and which is the basis of Chern-
Simons effective theories of edge excitations and the
classification of incompressible Hall states in terms of
Kac-Moody algebras [8-10]. In this Letter we provide
numerical evidence in support of suggestions [8,11] that
the edge is composite, that is, that the Hilbert space
relevant to fractional edge excitations is the product of
(in general, more than one) Hilbert spaces for chiral Lut-
tinger liquids. (Integer edges can be considered [12-15]
as the product of n Luttinger liquids for v=n).

Let us consider the cases v= 3 and 3. The calcula-
tions which we describe below are made using the hard-
core model in which a pair of electrons interact only when
they are in a state of RAM 1. (In the language of
Haldane's pseudopotentials [16] only V~NO. ) In the bulk

the chemical potential for this model jumps from 0 to
—V] when v crosses & and pairs of electrons are forced
to occupy RAM 1. The v= —, FQHE and its daughters
occur, for 3

~ v~ &, as long as the true interaction is

sufficiently close [16] to this ideal model for the chemical
potential gaps to survive [6]. In this model, any many-
body state in the gap must avoid RAM 1 and must there-
fore be expressible in the form [11,17-19]

where m =3 and Q, [z] is a symmetric polynomial of
homogeneous degree M. For edge excitations, M is small
compared to N, the number of electrons in the system.
[For M &(N and M =1,2, . . . , 7, the number of indepen-
dent excitations is 1, 2, 3, 5, 7, 11, and 15, respectively.
For a single quasihole excitation M —N, while for a
change of filling factor M-Ã . We choose to work in
the symmetric gauge where the single-particle eigenstates
are labeled by an~ular momentum m =0, 1,2, . . . ,

p„, (z) =(2trm!2 ) ' z"'exp( —
~z~ /4), and z =(x

+iy)/I is the electron coordinate. ]
A rather complete description of the v=1/m edge is

provided by a mapping to the integer edge. The M=0
state is the Laughlin wave function [4], the most compact
state which (for I =3) avoids RAM 1. The low-lying
excitations for v = I/m can be mapped one to one onto the
low-lying edge states for v=1, which are the particle-hole
excitations of a filled Landau level. In each case, the ex-
citations with total angular momentum M can be put into
one-to-one correspondence with the set of symmetric
polynomials of homogeneous degree M [14,15,17,18], and
so form one branch.

For v=
& the number and nature of edge excitations

does not follow as readily from the microscopic origin of
the bulk gap, which in this case is understood in terms of
particle-hole symmetry. A v= —,

' state has an edge where
the electron density falls from v= —,

' to zero. Imagine
constructing a 3 state by particle-hole conjugation of the

state. The resulting electronic density then goes from
v= —', to 1 at the same place, and so there must be a
second, outer edge at which the density falls from v=1 to
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where C(+[z]) denotes particle-hole conjugation with
reference to the truncated Hilbert space (see below). In
the present work we provide the first direct evidence that
this picture of two separated edges, supporting two
branches of excitations, is in fact correct. We find the ex-
act ground state and low-lying excited states for small
v=

& systems of electrons confined by a potential in a
disk geometry.

We begin with an examination of particle-hole conju-
gation for a finite system. Consider the Hamiltonian H
for a system of electrons on a disk, lying in the lowest
Landau level, subject to the hard-core (V~) interaction
and some confining potential W(lz l). Replacing the elec-
tron creation operator et by a hole annihilation operator
h, the Hamiltonian in the hole representation is

H=HII, —g (2D„+W„,)h„,h„, + g (W +D„,), (3)
nt=0 nt=0

where Hl, p is the hole-hole interaction and

M„

2D. = 2 ((mm'I Vlmm') —(mm'l Vlm'm)) (4)
ni'=0

Here the external potential W'(lzl) has matrix elements
(m'lWlm) =W„,6„,„, in the symmetric gauge. Since the
expected radius of the mth single-particle state increases
with m, a confining potential W(lzl) will lead to coef-
ficients 8'„, which also increase with m. In order to have
a finite number of holes, the Hilbert space must be trun-
cated at m =M„, which is equivalent to introducing an
unphysical hard edge at M„. Thus suitable 8'„,'s must be
chosen which keep the electrons away from M, (see
below). Above, —2D„, represents the attractive interac-
tions between holes and the electrons present in the hole
vacuum. This potential slowly declines in magnitude as
the hard edge is approached and tends to confine holes to
the region occupied by electrons. (For the hard-core
model and large M„, D„, 2 for small m and D, 1 as
m M„.) Hl h has exactly the same form as the
electron-electron interaction (i.e., the holes interact via
the same hard-core or Vi interaction), so the bulk gap for
v= =, is a result of the holes arranging themselves to
avoid RAM l.

For the choice of confining potential 8'„, = —D„„H is
completely particle-hole symmetric. It follows that in

this case the edge states are simply the particle-hole con-
jugates of the electron edge states discussed above, and so
there is only one branch.

We now consider the physically relevant case of smooth
edge potentials. If the electron density has already been

zero. It has been conjectured [11,17] that for a physical-
ly smooth confining potential the outer edge can also sup-
port excitations so that the relevant many-body wave
functions are given by

(2)

pushed to zero by 8'„, by the time M is reached, then
the truncation plays no essential role. As long as it
satisfies this smoothness condition, the detailed form of
8'„, does not matter greatly. Here we will use a simple
edge described by

0, ifm~M„
8'„, ='

(m —M, )S, if m )M, .
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FIG. 1. Occupations (n„,) =(e e) in the ground state for vari-
ous fillings, with a confining potential 8'„, =0.35(m —12) for
m & 12. Notice that added electrons can go either to an inner
or an outer edge. The six-hole ground state, for example, has a
four-hole v= —,

' droplet plus two holes at the outer edge. An
added electron goes to the inner edge, so that the five-hole
ground state consists of a three-hole droplet plus the same two
holes at the outer edge. The inner holes try to form a v= 3

droplet; they are very nearly particle-hole conjugates of Laugh-
lin states for the same number of electrons.

The results reported here are for M„=18, M, =12, and
5=0.35V]. There are nineteen single-particle states in

the Hilbert space. Note that MT=+„,mc„,c is a good
quantum number for any W(lzl) and V(lzl —z2l).

In Fig. 1 we show the single-particle occupation num-

bers (n„,) for the exact ground states with from two to six

holes on the nineteen-state disk. In each case we identify
a "bulk" v= —,

' state near the center, followed by com-

posite edges. Added holes go either to a hole droplet at
the center or to the edge of the system. Within the hole
droplets (n ) is nearly independent of the number of
holes at the edge of the system. Within the two- and
three-hole droplets (n„,)—1

—(n„,)1, where (n„,)L is the
angular momentum distribution in the v= —,

' Laughlin
state for the same number of particles [20]. (The charac-
teristic bump in (n„,)l near the edge reflects the possibili-
ty of avoiding RAM 1 at a locally higher electron density
near the edge. )

In the ground state, single-particle states beyond the
inner droplet have quite well-defined occupancies (Fig.
1). This is also true for low-lying excitations and permits
us to identify two separate excitation branches. In Fig. 2
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FIG. 2. Excitation spectrum for five holes and fourteen elec-
trons. The three dots associated with each eigenstate show the
occupancy of the three outermost single-particle states, at
m=l6, l7, and Ig. Nominally empty states (with (n„,}(O.I)
are labeled with an open circle, awhile nominally occupied states
(with (n„,) )0.9) are labeled with closed circles. In certain se-
quences of excitations, such as those connected by solid lines,
the outer edge does not change. Thus the energy changes are a
result of excitations in the droplet and at the inner edge. The
rightmost two sequences marked here have different outer
edges, but have similar three-hole droplets. The sequences are
parallel because their droplets are undergoing identical excita-
tions. An excitation at the outer edge is given by the offset be-
tween these two sequences (the dashed line). Going up the
dashed line, the holes' total angular momentum changes by —l

because one hole moves inward (or one electron moves from
m =l6 to m 17). The vertical distance going up the dashed
line is the excitation energy required to do this.

the low-energy spectrum is shown as a function of the to-
tal hole momentum MhT for a system with five holes and
hence fourteen electrons. The labeling indicates the oc-
cupancies of the outermost three single-particle states
(those with m =16,17, 1S), with open dots indicating
holes and solid dots electrons. (An occupancy of less
than 0.10 is labeled as a hole and greater than 0.90 as an
electron. ) The ground state is represented as ooo, in

agreement with Fig. 1. The ground state has MqT =44
as expected for a three-hole Laughlin droplet [MI,T

=3Hh(NI, —1)j2 =9] plus two outer holes at m =17,18.
Let us classify a number of the low-lying excitations in

Fig. l. (1) The states connected to the ground state by a
solid line (the sequence with MI, T =45,46,47) are excita-
tions on the inner edge. (Note that there is one low-lying
state with an angular momentum increase of 1 and two
with an increase of 2, as expected. The lowest state with

MpT =44+3 is a "bulk" quasihole excitation of the
three-hole droplet. ) We emphasize that, although some
mixing between inner and outer edges does occur in the
exact eigenstates, the quantum numbers of the unmixed
states are preserved. (2) The lowest-energy state at
MI, T =44 —1, connected to the ground state by a dashed
line in Fig. 1, is the hMT=l outer-edge excitation. (In-
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FIG. 3. Excitation energies of the inner-edge branch for
three-hole droplets. These are found by comparing two states
with the same nominal outer-edge configuration but different
states of the inner hole droplet. Calculations with a total of
three, four, five, or six holes give nearly the same energies, evi-
dence of the independence of the two edges. The lowest-energy
excited state is shown for each value of AMi, r (the change in to-
tal hole angular momentum). The lines are guides to the eye.

creasing angular momentum for electrons corresponds to
decreasing angular momentum for holes. ) The sequence
of states connected to this one by solid lines is nearly
identical, except for a constant shift, to the sequence con-
nected to the ground state. This shows that the excitation
energies on one edge are nearly independent of the excita-
tion state on the other edge. In each case, the outer edge
is unchanging, so the excitations are taking place in the
three-hole droplet. (3) The second lowest-energy state in

Fig. 2 occurs at MI, T =36, which arises from a four-hole
Laughlin droplet with MI,7=18 plus a hole at m =18.
This represents an excitation in which charge is
transferred from the outer edge to the inner edge. The
low-energy OO states at MI, T =37-40 are excitations on
the edge of the four-hole Laughlin droplet. Again there
is one excitation with BMqr =1 and two with AMI, T=2.
(4) The state at MI, T =32 is a bulk quasiparticle excita-
tion in the four-hole droplet. One can identify all low-

lying states, in this manner.
Now let us examine the two branches quantitatively.

For excitations on the outer edge with AMT=I, AE
ranges from 0.36V| to 0.41Vi, compared to the value
0.35V| which would be expected for noninteracting elec-
trons with our confining potential. The velocity of the
edge mode, hE/hMT, is positive, and its magnitude is
only weakly renormalized by electron-electron interac-
tions. An example of excitation energies for an inner-
edge branch is shown in Fig. 3, for three-hole droplets
with three to six total holes. The low-energy excitations
result from expanding the hole droplet (AMDT )0) which
means hMT & 0 for electrons. Thus the velocity
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/J. E//JMT is negative for the inner branch. For the three-
hole droplets in Fig. 3, the velocity is = —0.18Vi,. for
the four- and five-hole droplets, it is = —0.25V]. The
excitation with AMhT = —3 represents a quasielectron ex-
citation which allows compression of the hole droplet. All
compressive excitations (AMhT ~ 0 in Fig. 3) lie above a
gap of order V[. We can also define a chemical potential
for each branch by computing the energy to add an elec-
tron to either edge. For example, the lower sequence con-
nected by lines in Fig. 2 can be compared to a similar se-
quence of six-hole states with the three outer states va-
cant, to find the energy to add an electron at m =15.
Proceeding in this manner, we can calculate the energy to
add an electron at each m in several ways, with nearly the
same result. Adding an electron at m at the outer edge
turns out to cost an energy equal to the confining poten-
tial plus an interaction energy = 1.7Vi, nearly indepen-
dent of m. (The chemical potential jump at v= —', for the
hard-core model in the thermodynamic limit is from
about 2Vi to 4V~.) One can, similarly, find the energy to
add an electron to the inner edge, shrinking the inner hole
droplet. These chemical potentials will be identical in the
thermodynamic limit. One can also assign to each
branch a charge equal to the inverse change in flux quan-
ta enclosed as an electron is added to the branch [11].
Adding an electron to the outside fully occupies one more
~m), so one more quantum of flux is enclosed, and
e,*„&,„=e. The inner droplet changes area just like a
Laughlin wave function. Adding an electron to the inner
edge (i.e., removing one hole from the inner droplet) thus
reduces the droplet's area by three flux quanta, corre-
sponding to a charge of e;*„„,„=—e/3. These satisfy the
sum rule g;e;*/e = —', , as expected [11,21].

We have identified two physically separated branches
of edge excitations for a bulk —', state. These are a natu-
ral consequence of the origin of the & state, which is ob-
tained by particle-hole conjugation of the 3 state. One
branch lies on the outer edge, where (n„,) falls from I to
0, and corresponds to electrons confined by an external
potential. Excitations on this branch have positive veloci-
ty and integral charge. The other branch lies on the
inner edge, where (n„,) rises from 3 to I, and corre-
sponds to the edge branch for a —,

' state of holes. The
hole droplet is repelled and confined by the electronic
edge. The inner-edge excitations have negative velocity
and fractional charge. The number of edge branches ob-
tained here and their general features (velocities, charges,
and certain sum rules) support the earlier conjectures of
MacDonald [11]and Wen [8].
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