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Using an acoustic technique profile analysis we have studied the growth of viscous fingers inside 3D
porous media. The experimental data support the definition of an instability parameter which captures
the essential features of the viscous fingering; its dependence on the viscosity ratio, on the flow rate, and
on the nature of the porous medium is compared to available theory. Our data demonstrate the predict-
ed crossover between diffusive and linear growth and the growth enhancement due to coupling between
large viscosity ratio and velocity-dependent hydrodynamic dispersion.

PACS numbers: 47.20.—k, 47.55.Mh, 68.10.Et

Viscous fingering [1-5] resulting from unstable fluid
displacements in porous media has been studied exten-
sively for forty years since the pioneering experiments of
Hill. Most of the papers on viscous fingering deal with
immiscible fluids, but indeed the problem involving misci-
ble fluids deserves at least as much attention as the im-
miscible case: As in the immiscible case, the unfavorable
viscosity ratio (displacing fluid less viscous than the dis-
placed one) generates the instability, but here the stabil-
izing effect is due to the hydrodynamic dispersion which
tends to spread out growing fingers. Dispersion is more
subtle than interfacial tension. Furthermore, it is aniso-
tropic and flow dependent, which leads to new predictions
[6-12], such as a crossover between diffusive and linear
growth regimes [7,12] and an enhancement of the insta-
bility due to the interplay of a large viscosity ratio and a
velocity-dependent hydrodynamic dispersion. Experi-
ments are scarce [1,13-18] and deal generally with a
pseudo-2D geometry involving qualitative visualization.
In this Letter, we use a newly developed acoustic tech-
nique to carry out the first study of the profiles of viscous
fingers in 3D porous media. Our experiments have been
carried out on three different porous media with a wide
range of viscosity ratios and flow rates. Both the diffusive
and the linear growth are observed, including the cross-
over from one to the other. Taken together, our data are
best understood in terms of a new instability parameter
that characterizes the main features of viscous fingering.
Our determination of the dependence of this parameter
on the viscosity ratio, on the flow rate, and on the porous
medium when placed in the context of existing theory
leads to new physical insights on this rich and varied
problem.

We make use of the standard continuum approach
[6-13], at a macroscopic scale, large compared to any de-
tails of the porous medium, and hence the equation
describing mixing is a convection-dispersion formalism
(CDE):
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where C(x,y,z,t) is the concentration and D is the

velocity-U-dependent dispersion coefficient tensor (D) in
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the flow direction, D, in the transverse direction, e=D,/
D). For a stable flow, a solution of (1) is a Gaussian
profile [19]. Experimental determinations of concentra-
tion profiles have demonstrated [19,20] the relevance of
the Gaussian dispersion statement involved in the CDE
(1) and allowed the measurement of D, (U).

To analyze the flow stability when a viscous fluid
(viscosity u+) saturating the porous medium is displaced
by another less-viscous fluid (u-) at a constant flow rate
U, Eq. (1) still holds, together with fluid incompressibility
and Darcy’s law [7]. Miscible fluids involve a concen-
tration-dependent viscosity u#(C). For the sake of simpli-
city an exponential law [u(C) =u_eRC] is generally as-
sumed; extension to other laws is straightforward and will
be given in a larger version [21] of this paper as well as
the effects of gravity. With this set of equations one can
perform either the complete calculation [11,12] of the
viscous fingering process or first proceed to the physically
illuminating linear stability analysis [6~10] yielding the
growth rate o of small disturbances versus their wave
vector g. At time =0 an analytical expression is ob-
tained [9]:

2y(y+q) =RqlU+LyDtanh(+ R)1/Dy, (2)

where y>=(o+D,q?)/Dy and L=(U/D)(dD/dU) is
the exponent of the velocity-dependent hydrodynamic
dispersion coefficient.

In the case L =0 [7] the lowest-order viscous term is
destabilizing, whereas the second-order dispersion term is
stabilizing, yielding a parabolic o-vs-g curve with a max-
imum growth rate and a cutoff wave vector q..

The case L=0 suggests a new effect [9]: For a large
enough combination of both L and R, there is no cutoff
wave vector q.; all wave vectors are unstable because
transverse stabilization is overcome by the destabilizating
interplay of viscosity and the longitudinal dispersion ve-
locity dependence. The crossover between the two re-
gimes is given by the parameter 7:

n=%LRtanh(3 R) —1—+e. (3)

For n <0, the instability is identical to the L =0 case; for
n > 0, the instability is harder [g.,0(g.) =o°]. Indeed, ¢
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should be bounded by geometric limitation yielding a
large enhancement of the growth rate at the transition
(n=0); for L =1, n=0, for small stabilizing transverse
dispersion (¢=0.1), at M =20 (R ~3). Experiments are
needed in this region to test the predictions.

The linear stability analysis predicts the main features
at the very beginning of the instability. Further develop-
ments require one to take into account nonlinearities
which allow shielding splitting and the fading of fingers
[7,11,12]; numerical calculations of these basic phenome-
na have been performed in 2D: one of the results deals
with the behavior of the overall front width Az as fingers
develop. Starting from a sharp step front at time ¢ =0, its
width grows first as in a diffusive process (Az ~+/1), and
then in a convective way (Az ~1): fingers spread linearly
with time [13-18] as for the Saffman-Taylor instability
[41.

An acoustic technique [19,20,22] is used to determine
the space and time dependence of the concentration
C(z,t) in our samples of typical size 4x4x30 cm?>. Basi-
cally, concentration measurements are derived from the
velocity variations of a sound wave in ten cross sections of
the sample (ten z values) with a 3-mm spatial resolution.
We have previously measured [19,23] the longitudinal
dispersion Dy versus the flow velocity U in a limestone
(permeability k=15x10"" m?), a millstone (k=11
x10~'* m?), and a fireproof brick (k =75%10""'2 m?):
As U increases, D, increases from a molecular diffusive
regime (L=0) to a mechanical dispersion regime (D,
~U, L=1); in between, for the fireproof brick, there is
an enhancement of L (L=1.5).

We have designed an experiment to measure D, [21].
Basically, we follow acoustically the spreading of a drop
of the same density and viscosity as the fluid saturating
the porous media. We go from an isotropic dispersion
(e=1) at low flow rate in the molecular diffusion regime
(with also L=0) to an anisotropic regime at larger flow
rate (¢=<0.05).

In the unstable flow case, the displacing fluid is pure
water (u—=8.0%10"* Pas at 30°C); displaced fluids
are water-glycerol mixtures of different concentration,
the viscosity of which varies from p+=8.0%x10 "% to 0.6
Pas at 30°C. From the viscosity-concentration relation-
ship we can compute for each experiment the rescaled
R and n values [21], R=(u4+u")/(us++u-) and
Lut —p")/2(us++pu—-)—1—+/e, where u values and
the u derivatives (u") are taken at concentration C=0 for
— subscript and C=1 for +. The permeability of the
samples will limit the range of available viscosity ratio
and flow rate due to the large pressure drop required to
flow across the sample. We note that here flows are
driven vertically with gravity always as a stabilizing
effect. Gravity can be of importance for the fireproof
brick sample [21].

In the limestone, measurements have been possible up
to M =25 at a flow rate ranging from 0.1 to 25 cm/h in
which case L=1, £=0.05. Figure 1(a) shows the result-
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FIG. 1. Concentration profiles: concentration vs reduced
time (Ut/h, h sample length) at flow rate U =6.5 cm/h in lime-
stone. From left to right each profile corresponds to increasing
distance z from the inlet (2.5, 2.5+2.1, 2.5+4.2 cm,...). (a)
Viscosity ratio M =1.75. (b) M =3.16.

ing concentration profiles for M =1.75 (R=0.40) and
U=6.5 cm/h for ten z positions (z=2.5 2.5+2.1,
2.5+4.2cm, ..., from the inlet). We clearly see the in-
stability growth as we go away from the inlet, starting
with a more or less diffuse front to small growing fingers.
For larger viscosity ratios the observed profiles exhibit
shoulders, which is the signature of fingers [Fig. 1(b)].
In the figures we plot C versus the pore volume Ut/h (h
sample length); at a given M ratio, the set of curves cor-
responding to different flow rate U are superimposable:
The instability growth is nearly independent of the flow
rate. It is obvious that experimental profiles are more un-
stable in Fig. 1(b) than in 1(a); however, we need a more
quantitative characterization of the degree of instability.
As suggested in Refs. [7,12], the profile width is charac-
teristic of the overall instability. Since we have ten
profiles at ten z values, we measure for each profile the
time width between C =0.1 and C=0.9 (the exact choice
of numerical values of C is arbitrary, but the result is not
sensitive to the values chosen). From the stable flow
measurements we also know the stable time width due to
dispersion [19]. Hence we characterize each instability
profile by the time excess width &z, which is the difference
between the unstable and stable time widths at the same
location z and flow velocity. Moreover, to take into ac-
count the flow independence, we will plot Ut vs z as the
instability characteristic. The resulting analysis of the
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data of Figs. 1(a) and 1(b) is given in Fig. 2. For the low
viscosity ratio, as can be seen from the direct profile, we
do observe a crossover from a diffusive regime (U6t ~\/z_,
dash-dotted line) at low z values to the fully developed
fingers regime (U&t ~z, dashed line), whereas the large-
viscosity-ratio experiment only exhibits the last regime.
The low-viscosity-ratio experiment clearly demonstrates
the crossover between the diffusive and the developed
fingers regime in agreement with the numerical simula-
tions [7,12]. The initial small disturbances grow, shield,
and spread, leading first to an enlarged front which still
looks like a diffusive front. When the disturbances be-
come large enough, nonlinearities stabilize the fingers,
which just grow further linearly with time. We em-
phasize that the observation of the crossover is not easy.
We observe it at M =1.75. For M =1.18 the sample is
not long enough to exhibit the crossover (diffusive all
along the sample), whereas for M =2.18 instability has
already developed at the shortest distance from the inlet
(z=2.5cm).

The linear temporal spreading of the fingers when the
instability is fully settled is characterized only by the
slope of Udt vs z: We take p =USét/z as our experimental
parameter. In the limestone, the flow independence leads
to a plateau in a plot of p vs U. As the relevant effect of
M in the stability analysis is through R, in Fig. 3 we give
a plot of p against R: The data are nearly linear, mean-
ing that our experimental parameter p used to describe
the fingering is simply proportional to R.

In the millstone, we have studied the viscosity ratio M
from 1.25 to 760. The higher viscosity ratios have been
obtained at the cost of a limited range of flow rate, yield-
ing L~0 and &~ 1, and then n <0 always in this medi-
um. As in the limestone, in the millstone the fingers de-
velop with a linear time dependence of the excess width
(USt < z). The corresponding parameters p are given in
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FIG. 2. Excess width (U8t) of the profile vs distance z from
the inlet. + and O correspond to Figs. 1(a) and 1(b). The
dash-dotted line is a guide for the eye for the diffusive regime.
The dashed lines are the linear temporal spreading regime; the
slope of the dashed line is our experimental parameter p.

Fig. 3; the two measurements at M =135 and 760 also
align nicely with the others, even for different values of L
and ¢ but still with n <0. This gives more confidence in
the proportionality to R of our experimental parameter p.
A larger slope of p vs R is obtained for the limestone than
for the millstone, presumably because the millstone is
much more homogenous than the limestone. In the mill-
stone fluctuations of permeability are of the order of 25%,
whereas for the heterogenous limestone we measure fluc-
tuations up to 200% [24].

The fireproof brick sample is a good candidate to test
the hard transition (L ~1.5), but due to its large permea-
bility there are gravity effects. To get rid of these stabil-
izing effects requires much larger flow rates than the crit-
ical velocity [1,21] resulting in a limitation of the viscosi-
ty ratio to M ~135. As for the two previous samples,
fingers develop with a linear time dependence. For M
<25, the corresponding parameters p once again are
linear with R (Fig. 3) with a slope close to the one of the
millstone (they both have the same order of magnitude of
permeability fluctuations).

For the two larger M values (M =50 and 135), we can
only get a lower bound of p [21]. However, these data
(Fig. 3) are well above the linear R relationship (espe-
cially for M =135). Guided by the linear stability
analysis one would think that this behavior corresponds to
the prediction of a harder instability for large M values
[9]. To support this, we note that the conditions neces-
sary for such a larger instability growth (>0) are
fulfilled: From R, L, and & values, using (4), we get n~7
for M =135 (L=1.5, £=0.1), well above the threshold
(n==0), and n~2.5 for M =50.
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FIG. 3. Experimental parameter p vs the viscosity variable R
for the limestone (O), the millstone (+), and the fireproof brick
(0). M is the viscosity ratio.
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Let us summarize the experimental features and com-
pare them with the theory. (i) The crossover, observed
experimentally, between a diffusive regime (~+/t
growth) and a convective regime (~¢ growth) for the
width of the profile is in agreement with numerical simu-
lations [7,12] of finger growth in a porous medium. (i)
In the convective regime, in which fingers grow linearly
with time, we have been able to define an instability pa-
rameter p which characterizes the overall instability
growth. (iii) In most of the cases analyzed, the only p
viscosity dependence is linear with R (R~InM). The
larger the heterogeneity of the medium, the larger the
slope of p vs R. There are no corresponding predictions
except that the viscosity ratio enters in the theory only
through R. (iv) An enhancement of the initial growth
rate under the subtle interplay of a large viscosity ratio
and a velocity-dependent hydrodynamic dispersion has
been predicted [9]; this is a way to account for the large-
M data in the fireproof brick which are well above the
p~ R relationship and for which the theoretical condi-
tions are totally fulfilled. As we do not observe this effect
in the millstone even with a larger viscosity ratio (M
=760), but a much lower L, these two porous media
demonstrate that both large M and large L are required
to obtain this effect.

Our experiment in real three-dimensional porous media
yields a dependence of p on viscosity ratio and flow veloc-
ity which may stimulate further development of the
theory.
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