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Growing Hair on Black Holes
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A black hole can carry quantum numbers that are not associated with massless gauge fields, contrary
to the spirit of the “no-hair” theorems. In the Higgs phase of a gauge theory, electric charge on a black
hole generates a nonzero electric field outside the event horizon. This field is nonperturbative in A and is
exponentially screened far from the hole. It arises from the cloud of virtual cosmic strings that surround
the black hole. In the confinement phase, a magnetic charge on a black hole generates a classical field
that is screened at long range by nonperturbative effects. Despite the sharp difference in their formal
descriptions, the electric and magnetic cases are closely similar physically.

PACS numbers: 97.60.Lf, 04.20.Jb, 11.17.+y

The *“‘no-hair” theorems [1] of black-hole physics state
that a stationary black hole can be completely character-
ized by a few quantum numbers, namely, those associated
with long-range gauge fields. These theorems give sub-
stance to the idea that, in the process of collapse to a
black hole, anything that can be radiated away will be ra-
diated away [2]. In the case of gravity coupled to a
massless Abelian gauge field, the allowed quantum num-
bers are the mass M, the angular momentum J, and the
(electric or magnetic) charge Q.

Models of elementary particle physics abound with
spontaneously broken gauge symmetries. The charges
corresponding to these symmetries are screened, and the
vector mesons are massive. No-hair theorems can be ex-
tended to this case [3,4]; they indicate that, at the classi-
cal level, there is no sign of the broken gauge symmetry
outside a black hole. In particular, there are no station-
ary black-hole solutions that are nonsingular at the event
horizon and have a nonvanishing massive vector field that
decays exponentially far from the hole [5]. Furthermore,
outside the event horizon of a stationary magnetically
charged black hole, the Higgs field is covariantly constant
[5].

The symmetry breakdown may leave unbroken a resid-
ual discrete subgroup of the gauge group. Then, con-
served charges can be defined [6-8], and such charges
can reside on a black hole. Yet, according to the no-hair
theorems, these charges have no classical effect on the
properties of the hole. It would be quite disturbing if
such charges were really dynamically impotent when car-
ried by black holes, as the no-hair theorems suggest. For
one thing, it would falsify the attractive idea [9] that
sufficiently small black holes are fundamentally indistin-
guishable from sufficiently heavy elementary particles,
since the latter certainly can carry these charges. It has
been argued previously that the charge is observable in

principle through Aharonov-Bohm scattering off suitable
cosmic strings [6,10], but it would be disappointing if this
rather exotic gedanken experiment were the whole story.

We argue here that a screened charge has quite tangi-
ble effects that can be detected without resorting to an
experiment involving cosmic strings. In fact, there is an
electric field external to a black hole carrying a screened
electric charge; it could be detected by an experimenter
armed with electroscopes and pith balls. Such locally
measurable hair can actually be reconciled with the no-
hair theorems in either of two ways. The theorems state
that classical hair is incompatible with classical screen-
ing. We find that if the screening is classical (as in a
weakly coupled gauge-Higgs system), then the charge
can produce a nonclassical (electric) field that is nonper-
turbative in A. On the other hand, if the screening is
quantum mechanical (as in a strongly coupled confining
gauge theory), then the charge can produce a classical
(magnetic) field that is independent of 4. Electric fields
are generated by a process in which a virtual loop of
cosmic string lassoes the hole and then reannihilates.
Similarly, magnetic fields arise from the cloud of virtual
electric-flux tubes that surrounds the hole.

Screened electric fields.— We focus on a simple model
with a Zy gauge symmetry, an Abelian gauge theory in
which a scalar with charge Nhe condenses, where Ae is
the charge quantum of the theory. The charge modulo
N on a black hole can be detected by means of the
Aharonov-Bohm interaction of the hole with a cosmic
string [6]. But the no-hair theorem ensures that the
charge has no classical effect on the black hole, nor is
there any effect on small fluctuations of the quantum
fields about the classical background. The dynamical
effects of the charge are nonperturbative in 4; they are
associated with /arge quantum fluctuations— virtual loops
of cosmic string [11,12].
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Nonperturbative effects are most conveniently studied
using Euclidean path-integral methods. The black-hole
contribution to the partition function at temperature g~
is found [13] by summing over configurations that are
periodic in imaginary time 7 with period 84, have the to-
pology R?*xS?2, and are asymptotically flat; the sum is
weighted by e ~5/" where S is the Euclidean action. The
saddle points of this integral are the (Euclidean) classical
black-hole solutions. In the Euclidean Schwarzschild
solution, the Schwarzschild coordinates » and 7 are polar
coordinates on R?, and the two-sphere of minimal radius
r=2M sits above the origin of the plane— this minimal
sphere is the Euclidean vestige of the event horizon.

If we are interested in the behavior of black holes with
a definite value of the Zy charge, we must insert a pro-
jection operator into the path integral. The expression
for the partition function of a black hole with charge Q in
equilibrium with a radiation bath at temperature 8~
then becomes

_ ¥ _.2nkQ
Zo(B) k;mexp[ P Z: (), (1
where Z;(B) is the path integral over periodic
configurations that satisfy the constraint
ph 2n
ej; drA,(t,r)r:ka. 2)

Equation (2) has a remarkable interpretation. If we
regard F,, as a magnetic field, then [£" dt A, is the mag-
netic flux in the r-7 plane, and k is the vorticity, the value
of the flux in units of the flux quantum 2z/Ne. The elec-
tric charge Q tells us with what phase to weight the
different vorticity sectors.

In the semiclassical limit (A — 0, with B fixed), the Q
dependence of the partition function is dominated by the
configurations with nonzero vorticity that have the lowest
action; these are the classical vortex solutions with
k==x1. The action of the vortex can be computed
analytically in two different limiting cases. As the natu-
ral thickness of a cosmic string in fiat space becomes
small compared to the size of the black hole (the “thin-
string limit”), the vortex shrinks to a point at the origin
of the r-z plane (the location of the minimal two-sphere).
If the string tension is small in Planck units, the vortex
perturbs the background spacetime only slightly. The
action of the k=1 solution is Si=1=Sgmvity + ASvortex;
here Sgravity={(Bh)?*/16x is the action of the Euclidean
Schwarzschild solution, and AS\oriex =ABH T string, Where
A is the area of the event horizon and Tying is the ten-
sion of the minimal cosmic string. In the opposite
(““thick-string”) limit, the Higgs field contribution to the
action can be neglected, and the vortex is well approxi-
mated by a Coulombic configuration with ‘“charge”
q =2n/Ne; the action is Sgravity T ASvortexs Where ASyoriex
=(Bh) % q*/4nR =277/(Ne)?. Again, we have assumed
that the back reaction of the vortex on the metric is
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small; this is a good approximation provided R
> [A(Ne)?] ~"?Rppanck.  (Neglecting back reaction will
simplify the analysis described below. Because the
configurations that we sum over all have the same four-
geometry, it is trivial to compute expectation values at a
fixed point in spacetime. If we needed to sum over
configurations with different geometries, things would be
much more complicated.)

The leading charge-dependent contributions to the
expectation values of static observables on the black-
hole background can also be computed by summing
contributions from the k=1 sectors, weighted by
exp(—i2nQk/Nhe). Two operators of particular in-
terest are the electric field and the energy-momentum as-
sociated with it. The vortex and antivortex have equal
and opposite F,.; their contributions would cancel if the
sectors were equally weighted. But if the charge Q on the
black hole is nonzero, vortex and antivortex are weighted
by unequal phases, and the Euclidean electric field ac-
quires an expectation value proportional to 2isin(2zQ/
Nhe). Continuing to real time, we find the electric field

(E(r))=2sinQrQ/Nhe)C(Bh)
XCXP( _ASvorlcx/h )[Frr(r)]vorlex s (3)

where C(Bh) is a ratio of functional determinants arising
from the integral over small fluctuations about the classi-
cal solution. The field strength (E (r)) falls off exponen-
tially as e ~#’/r, for r>>p ~' (where Ay is the mass of the
vector meson). An expression similar to Eq. (3) is found
for (E?2) (and hence for the expectation value of energy-
momentum), but with cos(2xQ/N he) replacing sin(2zQ/
Nhe). Note that it is far from true that the expectation
value of the square is equal to the square of the expecta-
tion value—not only is the charge dependence different,
but also the same exponential tunneling factor appears
(not the square). Indeed, the same exponential factor ap-
pears in the expectation value of any power of E. These
are not the moments of a probability distribution in
which all measurements find an exponentially small field.
Rather, most measurements find no field, but exponen-
tially rare measurements find a field of order 1. Of
course, this is typical of tunneling processes. If we mea-
sure the momentum density at some point outside a ra-
dioactive nucleus, most measurements find nothing, but
on rare occasions an a particle is passing by. Knowledge
of the Zy charge tunnels out from behind the event hor-
izon just as the a particle tunnels out from behind the po-
tential barrier.

There is a very appealing spacetime picture corre-
sponding to the calculation we have just described. If an
object carries Zy charge, then processes in which the ob-
ject passes on either side of a cosmic string are weighted
by different Aharonov-Bohm phases. Even in the absence
of actual strings, the Aharonov-Bohm phase modulates
the amplitude for virtual processes in which a string
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world sheet envelops the charge. Consider, then, a virtual
process in which a loop of cosmic string nucleates at a
point on the event horizon of a black hole, sweeps around
the horizon two-sphere, then shrinks and annihilates at
the antipodal point. The virtual string has magnetic flux
in its core; hence its motion creates an electric field or-
thogonal to the magnetic field and the direction of
motion, an electric field in the radial direction. The
time-integrated value of this radial field is purely geo-
metrical—although the electric field is proportional to
the velocity, the time that the string spends at any point
on the sphere is inversely proportional to the velocity.
We must also average over all possible points of nu-
cleation. This averaging cancels the magnetic field of the
string, but the radial electric field survives. The vortex
described above may be interpreted as this averaged
string world sheet, and the phase in Eq. (1) is just the
Aharonov-Bohm phase associated with a world sheet that
wraps around the black hole k times.

The vortex is a solution to the Fuclidean classical field
equations that is nonsingular and has hair, e.g., a nonzero
electric field. The existence of this solution is consistent
with the no-hair theorems because when continued back
to real time, the solution fails to satisfy suitable reality
conditions—the electric field becomes imaginary. On the
other hand, expectation values of observables, obtained
by summing over the vorticity k, are real, but do not
satisfy the classical field equations. (These equations are
nonlinear, and we have seen that the expectation value of
a product is not a product of expectation values.) One
should also note that the vortex solution is not static, for
it is transformed under time reversal into an antivortex.
Yet the expectation values are static. In short, by per-
forming the sum over k, we proceed from nonstatic solu-
tions to static nonsolutions, thus violating the spirit of the
no-hair theorems while respecting their mathematical
content. (This mechanism is quite distinct from the idea
that the broken symmetry is restored near the horizon
[14], an idea for which we find no evidence.)

To avoid misunderstanding, we should add a clarifying
remark. The Zy hair that we have described endows the
black hole with a new quantum number; it enlarges the
black-hole state space. Such hair might be called pri-
mary hair, to distinguish it from another type— second -
ary hair, or hair growing on hair. Recently discussed ex-
amples of secondary hair are dilaton hair on electrically
(or magnetically) charged black holes [15,16] and axion
hair on dyonic black holes [16,17]. In these examples,
the dilaton or axion has a nonvanishing expectation value
outside the horizon. But the expectation value is not as-
sociated with a new quantum number, because it is com-
pletely determined by the values of conserved gauge
charges. Such secondary hair occurs even in the standard
model. Radiative corrections in the standard model in-
duce higher-dimension terms in the effective action that
couple matter fields or gauge fields to curvature. These

terms can, for example, excite a (dipole) electric field
outside a rotating black hole, or induce secondary Higgs
field hair on a nonrotating hole.

Screened magnetic fields.—1f a gauge theory is in a
Higgs phase, electric fields are screened, and magnetic
fields are confined to flux tubes. These phenomena can
be described classically—the screening length and flux
quantum are independent of A. If a gauge theory is in a
confinement phase, magnetic fields are screened, and
electric fields are confined to flux tubes. These phenome-
na are quantum mechanical; in fact, the inverse screening
length is nonperturbative in A. In spite of this formal
distinction, the Higgs and confinement phases have very
similar physical properties.

We have seen that Zy electric charges can be intro-
duced into a Higgs theory, such that the charges have an
Aharonov-Bohm interaction with a magnetic-flux tube.
Likewise, an SU(/V) gauge theory admits Zy magnetic
monopoles as point defects. The Zy magnetic charges
have an Aharonov-Bohm interaction with an electric-flux
tube; these charges can be carried by black holes [7,12].
If SU(N) is the unbroken subgroup of an appropriately
chosen larger spontaneously broken group, these mono-
poles may appear as topological solitons. But classical
black-hole solutions with Zy magnetic charges can be
constructed in any case, just as black holes with magnetic
charges can be constructed in ordinary electrodynamics.

The limit in which the confinement length scale is
small compared to the size of the black hole is similar to
the thin-string limit considered above—a moving virtual
electric-flux tube that lassoes the hole generates a mag-
netic field. [More precisely, the gauge-invariant operator
tr(F§) acquires an expectation value that depends on
the magnetic charge of the black hole.] This field falls
off exponentially, and is suppressed by the factor
exp(— AguTsuing/h ). The opposite (thick-string) limit is
rather different from before. Now we find that the path
integral is dominated by a classical solution with a
nonzero magnetic field outside the horizon; hence, the ex-
pectation value of the field near the horizon is A indepen-
dent. (Quantum effects still screen the field at long
range.) No-hair theorems concern solutions to the classi-
cal field equations. They do not forbid this type of mag-
netic hair, because the screening of the field does not
enter into a classical analysis.

This difference between the behavior of electric and
magnetic Zy hair in the thick-string limit arises because
of the different role played by 4 in the two cases. The
electric charge quantum is of order A, while the magnetic
charge quantum is A independent. Correspondingly, the
flux carried by a magnetic vortex is 4 independent, while
that carried by an electric vortex is of order A. Thus, a
cosmic string is a classical object, and the effects of virtu-
al strings are heavily suppressed, while an electric-flux
tube is a quantum-mechanical object that occurs copious-
ly in quantum fluctuations. The difference is sharpest if
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we demand that both the Higgs theory and the confining
theory are weakly coupled at the event horizon, so that
semiclassical methods are applicable in both cases. The
difference blurs if the confinement distance scale becomes
comparable to the size of the black hole (so that virtual
electric-flux tubes that envelop the hole become sup-
pressed), or if the Higgs theory becomes strongly coupled
(so that virtual cosmic strings become unsuppressed).

Other quantities, other holes.— We have found that a
black hole can carry quantum numbers that are not asso-
ciated with massless gauge fields, contrary to what the
no-hair theorems may seem to suggest. A black hole en-
dowed with such quantum numbers has locally measur-
able hair— nonvanishing fields outside the horizon that
are screened at long range.

Such screened hair also affects the thermal [18] behav-
ior of black holes, as we have discussed elsewhere [12].
Charge on a black hole reduces its temperature, com-
pared to an uncharged hole with the same mass. The
effect is exponentially small for screened electric charge
in a weakly coupled theory, but can be quite significant
for screened magnetic charge; there are zero-temperature
black holes (analogous to the extreme Reissner-Nord-
strom holes) that are stabilized by fields that are essen-
tially invisible (exponentially decaying) at large dis-
tances.

In the classical analysis of the field equations [2],
linear perturbation theory suggests that a massless (in-
teger) spin s field can support hair in partial waves
I =<s—1. Associated with the spin-2 graviton, then, we
have hair in partial waves /=0 (namely, M) and /=1
(J); associated with the spin-1 photon, we have hair in
=0 (Q). We have shown that the restriction to massless
fields can be removed in the case s=1. It will be interest-
ing to see whether this result can be extended to sym-
metries associated with higher spins, such as are suggest-
ed by superstring theory.

In a realistic model, various discrete gauge charges, as
well as ordinary electromagnetic charge, might be rele-
vant to the structure of extreme (zero-temperature) black
holes. It may be significant in this regard that for the re-
cently discovered charged dilaton black holes, the radius
approaches zero as the extreme family is approached
[15,16]. Therefore, short-distance physics, including the
effects of virtual strings discussed here, becomes especial-
ly important for the description of the extreme holes. If
we are ever lucky enough to find a small stable black hole
(perhaps a magnetic monopole) left over from the big
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bang, its detailed properties will reflect this physics.
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