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Algebraic Structure of Translation-Invariant Spin- z xxz and q-Potts Quantum Cbains
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Spin-2 xxz and q-Potts quantum chains with translation-invariant boundary conditions are analyzed
as representations of the periodic Temperley-Lieb-Jones algebra. A connection with the aSne Hecke
algebra is established and used to find the irreducible content. This analysis provides an explanation for
both the degeneracies and the overlap in the spectra of these models.
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Numerical studies [1] of the finite spin- —,
' xxz quan-

tum chain, subject to a class of translation-invariant
boundary conditions (hereafter TBC), .have revealed a
rich pattern of degeneracies in the spectrum of the associ-
ated Hamiltonian H. Exact relations between the spectra
of the xxz and of the q-Potts chains have also been ob-
served [1,2]. Both phenomena are also known to occur
for a special choice of non-TBC. For this choice H is
given by a sum over the generators of the Temperley-
Lieb-Jones (TLJ) algebra. Using the representation
theory of the TLJ algebra to analyze these models yields
exact information about the degeneracies and the overlap
in their spectra [3]. The degeneracies of the xxz spectra
can also be computed (for this special BC) from the fact
that the quantum group U~(SU(2)) generates the com-
mutant of the TLJ algebra in this representation.
U~(SU(2)), is, however, not useful for deriving the rela-
tions between the xxz and Potts chains.

Exact results about the symmetry properties of the
finite xxz and Potts chains with TBC can be found in

[2,4]. In [4] it was observed that while Uq(SU(2)) gen-
erators do not commute anymore with H, a certain alge-
braic relation involving H and the generators, from which
information about the degeneracies can be obtained, can
nevertheless be derived. In [2] a proof of an exact rela-
tion between the spectra of the xxz chain and the q-Potts
models for one particular choice of TBC and one particu-
lar q-Potts charge sector is given. Unfortunately, there
seems to be no obvious generalization of this proof to oth-
er TBC and/or charge sectors.

Translation-invariant lattice models form an important
class of models, especially for making a connection with a
continuum field theory description. Yet, as I tried to sug-
gest, our understanding of the finite-lattice symmetries of
these systems is lacking, while the results of [1,2,4] give
compelling evidence for their existence. Here I would
like to view the xxz and q-Potts models as representations
of the periodic TLJ algebra (see also [4]). The key idea
is to analyze the latter through their relation with the
a%ne Hecke algebra representations. After giving the
necessary mathematical background, we will consider the
xxz and Potts models. I will only outline the main results
and give a few illustrative examples, deferring many de-
tails and a more systematic discussion to a longer paper.

(c) [e;,e, ] =0V~t j~ &1—,

where 0& r & ~ and N is a non-negative integer. The
free-ends TLJ algebra, FTLJ(r, N) (the "usual" TLJ
algebra), is defined by the subset of the relations (1) for
which 1 ~i + 1 ~ N on the left-hand side (lhs) of (lb).
The periodic TLJ algebra, PTLJ(r, N), is defined by the
relations (1) with 1 ~i ~ N and the identifications 0:N—
and N + 1 =1 made on the lhs of (lb) and in computing
~i

—j~ on the right-hand side (rhs) of (lc). While
FTLJ(r, N) is finite dimensional for finite N, PTLJ(z, N)
is infinite dimensional if N & 2. Moreover, FTLJ(r, N)
C FTLJ(r, N+ I )—a useful property for the analysis of
the irreducible representations (irreps) [5]. There seems
to be no simple analog of this property for PTLJ(r, N).
We now turn to the connection between PTLJ(riN) and
the affine Hecke algebra AH(t, N) which offers a way to
circumvent this problem since AH(t, N) AtH(t, N+1).

A PTLJ(r, N) algebra automorphism is given by e;
e;+~ (i =1, . . . , N, iV+1—= 1). Assume that a repre-

sentation of PTLJ(r, N) is specified together with an in-
vertible operator C] which realizes this automorphism,
namely,

C]el'C[ =e;+], i = 1, . . . , N, N + 1 —= 1

Consider, moreover, the set of N —
1 equations

(2)

C[e;C] =e;+], i =1, . . . , N —2,

"2 "—2=
(3)

Obviously, any C~ satisfying (2) is also a solution of
(3), but not the other way around. Therefore the ex-
istence of C~ is a necessary but not a sufticient condition
for the existence of C~. The set (3) involves only C~ and
the generators of FTLJ(r, N —1) which is a subalgebra
of PTLJ(r, N). Defining Hecke algebra generators
g; =(1+t)e; 1 (g =(t ——1)g;+t, g;g;+ g; =g;+)g;g;+),

Periodic TLJ and its relation to ajftne Hecke. —The
TLJ algebra is an associative algebra over C which is
generated by the unit element I and e~, . . . , etv. We con-
sider the following relations:

(a) e; =e;, (b) e;e;~~e; =re;,
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[g;,gJ] =0 V Ii —jI ) 1), where t 6 C (t&0, —1) is a
solution of i ' =2+t+t ', we find Ci —=g|g2 . -

gN —
I

C FTLJ(z, N —1) is a solution of (3). Given any other
solution Ci of (3) we define

(&) coluxnn:-5 -4 -3 -2 -1 0 1 2 3 4 5
~ ~ ~ ~ ~ ~ ~

t '
I

'
~ floorI

L 0

X=CI C). (4)

Equations (3) are equivalent to the following set of equa-
tions for X:

[X,g;] =0 (1 (i (N —2),

+gN —]+gN —
I gN —

I +gN —
I + ~

(sa)

(sb)

eN —
I xNeN —

I eN —] ~ +4c+0,2

1+t
(6)

Equations (S) together with the previous relations for
g|, . . . , gN —

I are nothing but the defining relations for
AH(t ', N) with X=xjv [6]. To summarize, all
PTLJ(z, N) representations for which an invertible Ci
exists are also AH(t, N) representations with x~ given
by (4). Clearly, C~ and FTLJ(z, N —1) are sufficient for
generating PTLJ(z, N). An interesting complication
arises in some of the q-Potts representations for which an
invertible CI does not exist. Nevertheless, there exists in
these representations an invertible C2, generating the au-

A

tomorphism e; e;+2, of the form C2=(CiX)
AH(t, N) quotients We .—will describe a family of

finite-dimensional irreps of AH(t, N) which are relevant
for the Potts and xxz chains with TBC. They arise from
a finite-dimensional quotient of AH(t, N), denoted
SAH(z, b, c,N), for which the following holds:

XN 6XN+C,2=

1 5 10 10 5 1
.5

FIG. l. (a) The Bratteli diagram for the generic SAH(z,
b, c,N) with N ( 5. (b) The double-cut Bratteli diagram
describing SAH(3, 3,N) with N (5. The representations on the
even floors appear in the Potts-3 model with Z3 preserving
TBC.

where b, c are numerical parameters. In [7l a detailed analysis of the structure was carried out for the special case
b=0, c=l. It can be easily extended to the more general case at hand. We now summarize the main results. The
dependence of the structure on the parameters is determined by the zeros of the following polynomials:

+ i

P„, (y, b, c) =(2cosy) "' e' r —
~ . e ™—m im 2cosX ~

2cosyf ——e
2cosyf ——e 'r%0,

(7)

f+ +I b

(b 2+.4c ) I/2 I +.e 2i &

b ~ (b'+4c) '"
=4cos y, m ~ 0 integer .

P„+, =0 and P„, =0 imply

sin[(n i
—1)y]

2cosy sin(n i y)

] sin [(n2 —1)y]
2 cosy sin(n2y)

For fixed y, b, c, one looks for the smallest positive in-
tegers n i and n2 such that (8) holds. If neither condition
is satisfied, the corresponding y, b, c values are called gen-
eric. In this case SAH(z, b, c,N) is semisimple and the
Bratteli diagram describing the sequence of algebras
formed by taking consecutive values of N is a Pascal tri-
angle [Fig. 1(a)l. The Bratteli diagram encodes basic in-

1972

I

formation about the irreps of the algebra. Each point at
floor N represents a distinct irrep of SAH(z, b, c,N)
whose dimension is the binomial coe%cient attached to
this point. If only one condition is satisfied, and without
loss of generality let it be the f+ condition, then the
Pascal-triangle description is correct only for SAH(z, b,
c,N) with N(ni —1. For higher N values SAH(z, b,
c,N) is not semisimple, but it is possible to define a cer-
tain quotient of it which is again semisimple. Its Bratteli
diagram is given by a cut Pascal triangle. One draws a
vertical line through column n] —

1 and deletes all points
which are strictly to the right of it. The dimension of a
remaining irrep at Aoor N is obtained inductively from
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the sum of the dimensions associated with the remaining
points at the (N —l)th fioor (the Aoor above) which are
connected to it. If both conditions in (8) are satisfied,
and without loss of generality nl » n2, then the previous
quotient is not semisimple for N ~ n2. Again we define a
new semisimple quotient whose Bratteli diagram is given

by a double-cut Pascal triangle. The second cut is done
by drawing a vertical line through the column —(n2 —1)
and deleting all points which lie strictly to the left. The
"double-cut" quotients of SAH(z, b, c,N) will be denoted
SAH(nt, n2, N) [an example with nt =n2=3 is shown in

Fig. 1(b)]. Their irreps appear in critical lattice models
whose continuum limit is described by minimal conformal
field theories.

We now discuss the solutions of (8). If b=O, we get
f+ =f = —,

' . This case was discussed extensively in [7]
and it leads to SAH( nn, N) For. b&0, f —depend on b
and c only through the combination c/b . Setting 4c/b
= —1/cos yl, (8) gives

g+pl~=nl y, g+p2n = —n2y, pl, p2 integers.

The spin- & xxz chain. —
(9)

N

H„„=g v, (y)j=l
N

[Gj~Qj~+ I +aj a'j~+'I +cosy(1 —aja J + I )
j=l

+t siny(a~ —a~+ I)], (io)

where a,' (a =x,y, z) acts as a standard 2X2 Pauli ma-
trix at position i in the chain, and as a unit matrix at all
other positions. A representation of FTLJ((4cos y)
N —1) is given by e;(y) =(2cosy) ' V;(y) (i =1, . . . ,

N —1). Setting

ai'v+I ~ tai'v+I =e ' (ai'~ iat') aw+I =af, (11)

we obtain a family of TBC for the model (in [1,2]
toroidal or twisted BC), parametrized by the angle ttt.

Under (11), the Nth term in (10) becomes

Hecke generator:

xw=gw —'I(y) g) '(y)e"'"~I ~w —I. (i4)

Inserting the last result into (9) we get

2y(q n —I)+ tt+ yz(2pt —N) =0,
2y(q+n2)+ tt)+ yz(2p2 —N ) =0, (i6b)

where q is the eigenvalue of S in the sector under con-
sideration. Relations (16) are the key to the understand-
ing of the xxz degeneracies. I will not discuss them in

detail but just stress the basic point. For generic values
of p and y (16a) and (16b) are not satisfied and the
irreps of PTLJ(z, N) coincide with the 5' sectors. For
t)), y values for which one or both of relations (16) are
satisfied, the smaller irreps of the SAH(z, b, c,N) quo-
tients reveal their presence. These irreps correspond to
the projected systems of [1]. In [8], a neat formula was
worked out for the dimensions of the projected sectors.
The match between these numbers and the dimensions of
the irreps of SAH(nt, n2, N) gives a nontrivial check of
the picture described above.

The Potts chains The cr.i—tical q-state Potts quantum
chain Hamiltonian is given for a chain of L sites by

L L

Hq-Pott. Z U2m —
I Z U2

m=1

Next we would like to show that (14) is related to
SAH(z, b, c,N). First one checks that 5 = —,

' g;=Ia,'
commutes with the xxz PTLJ(z, N) representation. It
turns out that (14) satisfies (6) only after choosing a
definite S= sector. In the standard spin basis where all
the o.,-. are diagonal, an S= sector is spanned by all basis
states with a fixed number 0» n» N of down spins.
Omitting the details of the computations involved we find

b =e idj2e —(W —n)iy( I ) n I +eiy/2 —niy( I ) W+n —
I

(i 5)—iN(y+ jf)

Vw, I (yap) e 2 [0'waj + 0'w 0'I +cosy(1 awa'f)' n&=1 k =0 n&=1 k =0

L q
—

l L q
—

1

teak g g gk~q —k (i7)

+isiny(aw —0 f)]e (i 2)

Adjoining ew(y, ti)) =(2cosy) 'Vw I(y, p) to FTLJ(z,
N —1), we get a representation of PTLJ(z, N). We will

proceed to analyze it according to the previous discussion.
In this case an invertible Cl exists:

' SN —
1

where s; = V; (yz) + 1 permutes the i and i + 1 spaces in the
tensor product space (C ) on which H „.- acts. One
can verify that (13) satisfies (2) using s; a =a,'+ I s, .
Physically, Cl is the translation operator of the xxz chain
and the statement that the model is translation invariant
is equivalent to the statement that H„- and Cl commute.
Having an invertible CI we obtain from (4) an alone

nq =Rq =1, m—=enr nt (18)

A representation of FTLJ(llq, 2L —1) is provided by
taking e; =(llq)U; (i =1, . . . , 2L —1). Defining [2]

RL+1 =CO~R 1, q =0, . . . , q
—

1 (i9)

we obtain a family of TBC parametrized by the integer q.
e2L =(I/q)U2t together with FTLJ(1/q, 2L —1) gives a
representation of PTLJ(1/q, 2L) for all q. Equation (17)
with the TBC (19) has a global Zq invariance, namely,
the associated PTLJ(1/q, 2L) representation commutes

1973

where A„„R„,have nontrivial action only at site m. They
satisfy

—
1+ntRat ~ Rat +nt~ +mRm ~Rnid nt~
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C]I. C] ' =Z2R]RI . (20)

This is the desired result up to the Z2 factor on the rhs.
This factor commutes with the PTLJ( —,', 2L) representa-
tions. Using the projections Zz = —. (I ~ Zq) we obtain

with Z~ =Q„',=
~
f1„,. Other TBC possessing other dis-

crete global symmetries are also possible. I now analyze
in detail the PTLJ(I/q, 2L) representations for q =2, 3.

q =2.—This is the Ising model and for this case (19) is
the most general TBC. Working with FTLJ( —,', 2L —I )
we consider two solutions of (6): x2t. = I,Rt. According
to the previous general discussion the strategy is to check
whether C~x2t satisfies (2). In fact, we only have to
check it for i =2L —1. We find

lent to q =2 representations through conjugation with Z2
and q =0, 1,2 representations are equivalent to each other
through conjugation with Z3. For q =3 one finds

CIOI C) ' =Z3R]RI (2S)

So after projecting on the three Z3 sectors, the solution
x zt. =

1 accounts for the three (Z3, q ) representations
(1,0), (co, I), and (cu, 2), and, in each of them, an inver-
tible C; exists. This xzt is related to SAH(1, 5, 2L). The
other (Z3, q) representations are coming from x2t
=ZzRt which is related to SAH(3, 3, 2L) [Fig. 1(b)].
Here only an invertible C& exists. Finally, the two q
=0 representations are accounted for by x21 =1+Z3RI
+Z3Rt which is related to SAH(2, 4, 2L). We get

(z;c, )(z,—n, )(z;c, ') =+ (z;R,R, ), (21) Cl&2L +LX2l CI R 1 RL ~

—
I 2 2 (26)

that is, xzt =I yields an invertible C~ in the (Zz, q) rep-
resentations (1,0) and ( —1, 1). This solution corresponds
to SAH(1, 3,2L). Consider now xqL =RL..

C)R(niRI Ci ' = —Z2R[RI . (22)

However, since Ri anticommutes with Z2, the projection
of C~RI on the Z2 sectors is zero, and as a result we do
not get an invertible C~. Instead, by taking (C~RL), we

get, after projecting on the Z2 sectors, an invertible C2.
This accounts for the (1,1) and ( —1,0) representations.
The relevant quotient here is SAH(2, 2,N). Although the
Bratteli diagram at N=2L has only one irrep, C2 belongs
to a proper subalgebra of SAH(2, 2, N), and this irrep
splits into two, when viewed as a representation of the
subalgebra. It is interesting to note that in the q-Potts
representation C2 acts as a translation operator, while C]
is related to the duality transformation.

q =3.—Besides (19) we also consider the TBC [I]:

Rp+] =coqR), q =0, 1,2. (23)

The resulting e21 does not commute with Z3 but does
commute with a Z2(q) operator, Zq(q) =Z3ZQZ3
where Z2 is defined through its action:

Z2Qnrz2 +pyr, Z2Rnizz =Rr&r& Z2 =1. (24)

Altogether we have nine representations of PTLJ( &,2L)
labeled by (Z3,q) and six representations labeled by
(Z2(q), q). However, q

= I representations are equiva-

that is, we get a C~ even without further projecting on the
Z2 sectors.

Combining the analysis of the q-Potts models with that
of the xxz model, it is possible now to account for the
overlap in their spectra by identifying common irreps.
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