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Ehrenfest Theorem for Nonlinear Klein-Gordon Solitary Waves
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A theorem which describes the Newtonian dynamics of the center of mass (as defined with respect to

the energy density) of nonlinear Klein-Gordon-type solitary waves is proved. It appears as a generaliza-

tion of Ehrenfest's theorem in quantum mechanics, which describes the Newtonian dynamics of the

center of mass (as defined with respect to the probability density) of the linear wave functions. As an

example, the interaction of recently discovered two-dimensional pulsons [cf. E. M. Maslov, Phys. Lett. A

151, 47 (1990)] is considered.

PACS numbers: 03.40.Kf

The existence of stable solitary waves in nonlinear
dynamical systems has put a new emphasis on the wave-
particle duality in scalar field theory. This familiar con-
cept was historically an ad hoc assumption made in the
early 1920s by de Broglie and led to the well-known
Schrodinger equation. The wave-mechanical picture of
quantum mechanics arose: The particle concept became
merged with the linear wave-function profile + as a
consequence of Born's principle postulating that the par-
ticle probability of presence is proportional to (+ (. One
major link with the classical "macroscopical" mechanics
was performed by Ehrenfest's theorem [1]: The dynam-
ics of the center of mass of the particle wave function,
defined as X=fR3X(+ (dX, is Newtonian in the pres-
ence of an external potential V, in accordance with the
averaged force F= —fgradV(%' (dX.

In nonlinear physics, the bound dynamical problem
consisting of a nonlinear solitary wave (NSW) driven by
an external force andjor confined in an external potential
V(x,y, z) was considered by several authors [2-11].
These works emphasized the classical (Newtonian)
dynamical behavior of such perturbed NSW's, but, at the
same time, they exhibited the limits of considering
NSW's as pure Newtonian point particles [5-7]. In some
sort, NSW's occupy, in the present state of the art,
an original position in scalar field theory, as they display
some very peculiar properties of quantum objects—mostly due to their wave-particle duality [10,11]—together with many basic properties of classical
(Newtonian) point mechanics [2-9].

In this particular context, the present Letter displays a
self-consistent dynamical picture of NSW mechanics in

the case of a Klein-Gordon- (KG-) type Hamiltonian
density of the scalar field, which is defined as follows:

H(u, u, uy, u„u, ) = —,
' (uP+u'+uy'+u, ')

+ [1+p V(x,y, z) ]U(u)

(subscripts stand for partial derivations, as usual). It is
assumed that the nonlinear wave potential U(u) describes
a solitary wave. We state this assumption precisely as

follows:

, U(u)dx dy dz ( +~,

, H(u, u, u,„u„u,)dx dy dz =const ( +~ .~R3

(2)

Note that assumptions (2) imply lim J .- ~ u, =0.
The partial differential equation (PDE) corresponding to
the Hamiltonian density (1) reads

u« —u, —u, ,
—u..+[I+pV(x,y, z)]U„=O. (3)

In Eqs. (1) and (2), p is a scaling constant. From the
continuity equation,

d
H —div[u, grad u] =0, (4)

and from the definition of the scalar field momentum II
as the impulse of the center of mass of the scalar field u

according to the Hamiltonian density (1):

Il=,XH dx dy dz,
dt 4R' (5)

we obtain II = —f~3u, gradu dx dy dz and hence [cf. Eq.
(2)]

d H=-
dt ,u«gradu dx dy dz .~R' (6)

By appropriate integrations by parts, all six integrals of
the type f~3u, u~~dxdydz vanish because of the sol-
itary-wave assumption (2). Hence we obtain from Eqs.
(3) and (6),

d II=,[1+p V(x,y, z)]gradU(u)dx dy dz, (7)
dt

which leads to the following final result

d II = —p, Ugrad Vdx dy dz . (s)

Equation (8) is the equation of motion of the NSW sca-
lar field (I) and (2) in accordance with definition (5) of
the scalar field dynamical variable H. It may be regarded
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as an extension of Ehren fest's theorem to nonlinear
Klein-Gordon solitary waves: In the sense of a proper
averaging process which only depends on the nonlinear
scalar field itself, the center of energy (mass) of this sca-
lar field obeys an exact Newtonian dynamics

The small-solitary-wave-amplitude limit of Eq. (8),
defined by the small-amplitude parameter e«1, yields,
of course, the original quantum-mechanical Ehren-
fest theorem as recalled above. Assume u(x, y, z, t) =u
=ee'"'F(X, Y,Z, T) +c.c., where we introduce the
stretched coordinates X= t.x, Y= t.y, Z = ez, and
T =

& e t. Here the "stroboscoping frequency" Q is of
order unity and will be defined below. We assume
U(u) =pu +qu +. . . The substitution of the ansatz
u in the Lagrangian density L =u, —H, and the subse-
quent averaging over the rapidly oscillating terms propor-
tional to e —'""', n=1, 2, . . . , yields the corresponding
average Lagrangian a la Whitham, whose Euler equa-
tions restitute the following nonlinear Schrodinger ap-
proximation of the original PDE (3), provided that we as-
sume V-e:2.

i J2pFT+Fxx+Fvv+Fzz

+ 2pp(V/e')F +12q iF i
'F =0.

This PDE still describes the propagation of solitary
waves —of vanishing amplitude, i.e., of extending
width —except when the singularity in the field amplitude
develops, due to the 3+1 field dimensions. Then return-
ing to the original PDE (3) avoids it. It is crucial to note
that this transformation is possible only if 0 =2p. Then
the same procedure as above, applied to the Hamiltonian
(1), yields, to the lowest e order, H=4pe FF*, while
we have, obviously, to the same order, U(u) =2pe FF*.
Therefore, assuming p =2 allows Eq. (8) to reduce to the
quantum-mechanical Ehrenfest theorem.

We define the case of a weak spatial modulation (of
WKB type) of the nonlinear wave potential U(u) in our
dimensionless units as

V—:V(ex, ey, ez) (e«1), , U(u)dxdydz-const (9)

(note that the NSW characteristic width is of order uni-

ty). In this case, both the potential gradient gradV and
the space variable X may be approximated as constant
over the NSW width defining the rapid variation of the
wave potential U as well as of the Hamiltonian density H.
Hence we obtain from Eqs. (5) and (8):

M = —gradVix=x, +o(e ),d2Xg
2

dt

where

M =,H dx dy dz, p
' =,U(u)dx dy dz (10)

[cf. assumptions (2)]. Therefore the WKB case (9) of
the scalar field equation of motion (8) implies the ap-

u(x, y, O) =a~(0)u ~(x,y)+a&(0)u2(x, y), (12)

where each pulson is a nodeless symmetrical (about its
central axis, with the radius r) two-dimensional localized
pattern, according to the formulas of Ref. [12]:

u;(x,y, t) =u;(r, t) =a(t)u;(r) =Aa(t)e (13a)

(i =1,2),
r

1 m
A =exp — +3

2

V(a) =
2 Xa'(I —lna') .

all da
(13b)

The solitary-wave assumption (2) and the equation of
motion (6) yield

dt JR'II = — [ii lazu ~ gradus+ aqa ~
u 2gradu ~]dx dy =0.

(14)

Since we consider solitary waves (fR3grad[u~u2]dxdy
=0), we therefore have two situations: Either (i) the two
pulsons are in phase [al(t) =a2(t) =a(t)] or (ii) they are
in opposition of phase [al(t) = —aq(t) = —a(t)l. Equa-
tions (13a) and (13b) yield iia=k, a lna . Let us state
the initial configuration (12) precisely and assume that
the two pulsons are both located on the x axis and lie far
from each other, according to u2(x, y, O) =u |(x—&,y, 0),
where 6» v 2/k. Equation (14) gives the expression of
the force F] q originating from pulson 1 and driving
pulson 2:

F] 2= —
2 a+A ka lna he (15)

where a =+1 if the two pulsons are in phase and a = —1

if they are in opposition of phase. Taking into account

proximated NS8'point pa-rticle Newtonian mechanics in
the external potential V. We recover the classical one-
dimensional sine-Gordon [U(u) =1 —cosu] kink mechan-
ics [7,8]. Note that the field mass M which enters the
equation of motion (10) is a renormalized mass which
takes into account the presence of the potential V in the
Hamiltonian density (1). We recover the conclusion of
Ref. [10] which shows that the sine-Gordon "particle" os-
cillating in a (harmonic) confining potential according to
Newton's dynamics is defined by the static solution of the
PDE (3) (i.e., u« ——0), and not by the unperturbed soliton
profile.

Recently, very interesting two-dimensional so-called
"pulsons" have been predicted and numerically checked
in the following case [12]:

V=—0, U(u) = —,
' u'[m'+X(1 —lnu')]

(the notation corresponds to Ref. [121). We therefore
have [cf. Eq. (8)] II(t)—=0. Assume an initial two-pulson
configuration
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the positive orientation of the x axis according to the
choice of u2(x, y, o), we conclude that the interpulson
force is attractive when the two pulsons are in phase and
repulsive when they are in opposition of phase. This
qualitative property has been recently checked numerical-
ly [13].
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