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Statistical Properties of Resonances in Quantum Irregular Scattering
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The close relations between statistical properties of quantum dissipative systems and scattering sys-
tems is discussed. It is conjectured that for quantum chaotic scattering the distribution of the resonance
poles of the S matrix is generic and follows the predictions of the Ginibre ensemble of random non-
Hermitian matrices. This phenomenon has been demonstrated on a simple example of a single particle
scattered by eight randomly distributed point obstacles in three dimensions.
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Irregular scattering is nowadays one of the most in-
teresting questions in the field of quantum chaos. It has
been demonstrated, for instance [1], that the existence of
classical irregular scattering leads in the quantum case to
an S matrix whose structure can be described by the
Dyson ensemble of random matrices [2]. It is also known
that the Auctuations of the quantum cross section resem-
ble the so-called Ericson Auctuations (discovered for nu-

clear systems [3]). This indicates that many overlapping
resonances contribute. Also, the universal Auctuations of
the conductivity in mesoscopic samples has been recently
interpreted in terms of chaotic scattering [4]. It is there-
fore natural to ask whether one can predict something
about the universal features of the distribution of the cor-
responding resonance poles in the complex energy plane.

It is intuitively clear that the resonance poles have
much in common with the eigenvalues of a quantum dis-
sipative system. From the physical point of view, the res-
onance can be considered as a two-step process. During
the first step an unstable intermediate (virtual) state is
excited which then decays (second step) and leads for an
isolated resonance to a peak in the cross section. The
correspondence with the theory of the dissipative systems
becomes apparent as soon as one starts with the descrip-
tion of the virtual state.

In order to describe the intermediate state in the scat-
tering process, Livsic [5] introduced a dissipative operator
(the so-called Livsic matrix [6]), the eigenvalues of
which coincide with the position of the resonance poles.

The resonances which can be obtained as the poles of
the analytically continued Green's function are defined
according to Livsic with the help of a "restricted" quan-
tum dynamics. Let P be a projection on a finite-di-
mensional subspace of the state Hilbert space P and let
H be the relevant quantum Hamiltonian on iY. The re-
stricted Green's function is then defined as

P(H —z) 'P .

The Livsic matrix B(z) represents the eA'ective dissipa-
tive and energy-dependent Hamiltonian describing the
quantum dynamics on the restricted state space:

[B(z)—z] ' =P(H —z)

(the rest of the Hilbert space is understood as the "heat
bath" ). The resonances are then obtained by solving the
effective eigenvalue equation

(3)

This approach is equivalent to the complex scaling
method introduced later [7].

The Livsic method shows a close similarity with the
treatment of the dissipative system [8]. It is therefore
natural to conjecture that the statistical properties of the
eigenvalues of the dissipative system and of the resonance
poles in a scattering system coincide.

The question of a random matrix description of strong-
ly damped dissipative systems has been answered by
Grobe and Haake [9]. It turned out that the distribution
of the Euclidean distance between neighboring complex
eigenvalues of a classically chaotic dissipative system is

well characterized by the predictions of the Ginibre en-
semble of random matrices. Ginibre [10] dropped the re-
quirement of Hermiticity which is imposed when dealing
with the Dyson ensemble. The corresponding matrices
therefore have complex eigenvalues. The statistical prop-
erties have been investigated in [11]. One of the remark-
able features of the Ginibre ensemble is that it leads to
cubic level repulsion; i.e., the eigenvalues strongly repel
each other and are therefore correlated. This type of lev-
el repulsion should not be mixed with that of isolated res-
onances. For such nonoverlapping resonances the corre-
lations between the positions and the widths can be treat-
ed separately. In the analysis of Grobe and Haake [9,11]
these special correlations along the real axis, which are
for positions of the Gaussian-orthogonal-ensemble type,
are excluded. One considers only poles separated from
the real axis by one mean pole spacing, which raises the
question of a distribution in a plane rather than on a line.

In contradiction to the chaotic case, the eigenvalues of
an integrable dissipative system are described as a Pois-
son process in the plane which yields a linear repulsion of
the complex levels. So, one can state that the statistical
behavior of the quantized dissipative system exhibits
similar generic features as the level statistics of conserva-
tive systems (see Table I).

Let us come back to the distribution of the resonance
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TABLE I. Universal features.

Classical system

Conservative, integrable
Conservative, chaotic with

time-reversal symmetry
Dissipative, integrable
Dissipative, chaotic

Level-spacing distribution

Poisson process on a line

Gaussian orthogonal ensemble

Poisson process in the plane
Ginibre ensemble

80= —5+ g a„6(x—x„),
n=l

(4)

where 6 denotes the Laplacian in L (R ) and x=(x,y,
z). x„ is the position of the nth scatterer. The potential
can be considered as the first approximation (s waves
only) of a partial-wave representation of a cluster of
nonoverlapping potentials [12,13]. The scattering length
a„describing the single scatterer is, via the phase shift

go„, related to the coupling constant a„by

poles. As already mentioned, there is a close correspon-
dence between these poles and the eigenvalues of open
quantum systems. %e expect therefore a similar statisti-
cal behavior as discovered for the dissipative case.

In order to demonstrate this phenomenon we have in-
vestigated the three-dimensional elastic scattering of a
quantum particle on a cluster of eight point obstacles
placed randomly in the space (a "randomly deformed
cube"). The important feature of the scattering system is

the absence of symmetry. In the case of a symmetric
cluster it would be necessary —as for bound states —to
take into account only resonances which belong to the
same irreducible representation of the underlying symme-
try group. Consequently, any symmetric cluster (e.g. , a
cube) would diminish the number of available resonances
appreciably.

The corresponding quantum Hamiltonian can be for-
mally written as

and outgoing directions and I is an 8 x 8 matrix with ele-
ments

i'm
~(m

exp[i iF [x( —x„,i]
1
—

~(m
4%ix( xpp i

[r(E)](,= ~(—

(7)

in the lower complex energy plane.
Equation (8) has been solved numerically on a PC for

eighty statistically independent clusters [x„]of scatterers.
Each scattering center is characterized by the same
scattering length a„=l. The coordinates (x,y, z) of the
eight obstacles have been randomly chosen between 0 and
1.

In order to investigate the local statistical properties of
the poles, one has to unfold the numerical results in such
a way that the mean density of the poles is equal to 1.
Because the number of resonances in the considered ener-

gy interval for a given configuration is rather small
(about 90), we calculate the mean density of the poles
from the ensemble average. As one can see from Fig. 1

the distribution of poles of the ensemble has a rather
wildly behaved density. Therefore the unfolding pro-
cedure is of crucial importance. Denoting the distance to
the next neighbor by d;(1), the unfolded level spacing is
determined by

s; =d;(1)p (', (9)

The resonances correspond to the poles of the scattering
amplitude and can be found by solving the equation

det[r(E)] =0

1
cot(gp„) =

E a„

4+a„

JE
—500—

M Q*g+
*4 g+

where E is the particle energy.
It is well known that one can describe the formal Ham-

iltonian (4) in a mathematically sound way using the
self-adjoint extension theory (see [14] for more details).
It has been demonstrated that in the case of integrable
billiards the presence of the point scatterer leads to wave
chaos [15]. The scattering process described by (4) can
be solved almost analytically [14]. For the scattering am-
plitude one finds

8

fp(n;„, n.„,) = g [r(E)](„,'
4& I,m=]

&&exp[i JE (x(n;„—x„,n, „,)] . (6)

Here n;„,„t are the unit vectors pointing in the incoming

—1000-

—1500—

2000
0 2000 4000 6000

~e (E)

I I I I I
i

I I I I I I I I I

8000 l0000

FIG. 1. Position of the resonance poles of eight different
cluster configurations.
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1 .00 the next-neighbor distribution which looks like

Pp(s) =
& trs exp( ——,

'
trs )

0.80— for the Poisson process in the plane while for the Ginibre
ensemble we find (strictly speaking for ensembles of 2X2
matrices)

0.60— Pc(s) =2( —,'„ tr)'s 'exp( —
—,', ns') . (i 6)
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FIG. 2. Cumulative level-spacing distribution (N=3, see the
text). The distribution has been first calculated for each cluster
configuration separately and then put together. Solid line: pre-
diction of the Ginibre ensemble; dashed line: Poisson process in

the plane (uncorrelated poles); stars: calculated resonance-
spacing distribution.

with

a;(N) =maxRe[E;;E;(I), . . . , E;(N)]
—min Re[E;;E;(I ), . . . , E;(N)I,

b;(N) =maxlm[E;;E;(I), . . . , E;(N)]
—min lm[E;;E;(I ), . . . , E;(N)] . (12)

The local density then follows as

(i 3)

Now the level-spacing distribution can be compared
with the theoretical predictions. For this purpose the cu-
mulative distribution

I(s) =„Ejs'P(s') (i4)

was found to be well suited because I(s) depends only
smoothly on the bin size of s. In the last formula P(s) is

where the local density p; is the inverse of the mean area
per resonance in the complex plane around the resonance
E;. The local density has been calculated in the following
way. We denote the N nearest neighbors of E; by
E;(1), . . . , E;(N). The area 2; covered by these neigh-
bors has been obtained by

(io)

The calculated cumulative level-spacing distribution is
plotted in Fig. 2 and compared with the predictions of
(15) and of (16). A clear level repulsion [cubic for P(s)]
for small spacings and an overall agreement with the
Ginibre ensemble can be observed. We want to note that
for the same scattering ensemble the 5 matrix is, for fixed
energy, well described by the Dyson circular orthogonal
ensemble [13].

As already mentioned, in the case of integrable scatter-
ing systems the poles are expected to have similar statisti-
cal properties as a Poisson process in a plane. This as-
sumption has been checked for scattering on a two-
dimensional polar symmetric 6-shell potential. The re-
sults [16] support the expectations.

In summary, we have demonstrated that the resonance
poles of a chaotic quantum scattering system possess a
generic next-neighbor distribution which is described by
the Ginibre ensemble of random matrices. We believe
that the generic cubic pole repulsion can also be found in
other scattering systems.
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