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Spectral Analysis of the von Karman Flow Using Ultrasound Scattering
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We report experimental evidence that the scattering of sound waves by a fluid flow may be used, as a
nonintrusive and nonlocal method, to characterize the space-time structure of the flow. The experiment
has been performed using, as a test flow, the von Karman vortex street behind a cylinder at a low Rey-
nolds number (Re=50). The results are in good qualitative agreement with earlier experiments on the
von Karman vortex street and with recent theoretical developments on sound-velocity interaction.

PACS numbers: 47.25.—c, 43.35.+d

The propagation of sound waves in moving fluids has
been the subject of many experimental and theoretical
papers [1,2]. An important issue in these studies is to un-
derstand whether the perturbations produced in the sound
wave by the fluid motion may be used to measure relevant
features of the flow. In a recent paper Lund and Rojas
[3] have shown theoretically that ultrasound scattering
may be used as a spectral probe of the spatial vorticity
distribution, in the same way as light and neutron scatter-
ing are used in solid-state physics. Their result is rather
similar to the one of Kraichnan [2] but it has the advan-
tage of relating directly the scattered pressure with the
spatial Fourier transform of the vorticity field, a quantity
that plays a very important role in laminar and turbulent
Iluid IIows [4]. The usual Fourier-transform properties
imply that a good spectral resolution (i.e., in k space) is
obtained to the detriment of spatial resolution. The
method we propose here is thus quite diA'erent from other
local techniques (i.e., in x space), among which are hot-
wire anemometry and laser Doppler velocimetry [4-8].

Let us recall briefly the most important hypothesis used

by Lund and Rojas to obtain their results. A plane sound
wave, with velocity V;„, and pressure p;„,(x, t) =Po
xcos(K. r —2rrvot), is incident on a target vorticity dis-
tribution co =Vxu, where u is the speed of the flow under
study. The main hypotheses used in [3] are the following:
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FIG. 1. Schematic diagram of the experimental apparatus,
and schematic drawing of the von Karman vortex street.

AV= V VO,

p = (2n/c ) (vr" —vos'),

(2)

(3)

where r", s are unit vectors in the incident and scattered
directions, respectively, and 0 (p, hv) is the Fourier
transform in space and time of the vorticity field ru(r, t)

In order to check Eq. (1), we report in this Letter an
experiment on ultrasound scattering by a fluid flow in the
case of the von Karman vortex street (KVS) that devel-

ops behind a cylinder [4] placed in a uniform velocity
flow field. The KVS appears when the Reynolds number
Re=Uod/ri exceeds the critical threshold Re, =45 (Uo is
the mean flow velocity and g is the kinematic viscosity of
the air). Line vortices parallel to the cylinder are emitted
at the Strouhal frequency f=(0.21Re —4.5)rl/d, and
their speed is U~ =0.91Uo. The distance b =U~/f be-
tween two corotating vortices (see Fig. 1) may be taken
as constant although it slightly increases with the dis-
tance x from the cylinder. The choice of KVS has been
made mainly because this instability generates a regular
array of vortices which we expect to behave, for the in-
cident wave, like a diff'raction grating, producing max-

(a)
~ Vjgg~ && (M ~

&&c =2rrvo/K, where c is the speed of
sound; (b) the time scale of the liow is much longer than
vo ', and (c) the sound wave does not perturb the fluid

flow.
All three hypotheses are satisfied if the flow under

analysis is not in the high-Mach-number region. The
coupling between the vorticity field and the sound wave
comes from the nonlinear term u VV;„,+V;„, Vu in the
Navier-Stokes equation [2,3]. Using the first Born ap-
proximation for scattering, it is possible to compute the
pressure p„„.t of the scattered wave as a function of the
vorticity distribution only [3]. At a large distance D
from the interaction region and scattering angle 9 (see
also Fig. 1), one gets for the Fourier transform in time
P„,. t of p«.„t the following equation:

vi exp(iK D) cos8P„„D, —Po.
x (r" x s) 0(p, hv),

with
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imum scattering only along preferential directions.
Furthermore, this Aow has been well characterized by
previous experiments and simple models may be found in
the standard literature [4,9, 10].

A schematic diagram of our experimental setup is
shown in Fig. 1. A 50-cmx50-cm wind tunnel, 3 m long,
is used to produce an air wind of speed of Uo, with a tur-
bulent component, measured with a TSI hot-wire ane-
mometer, less than 0.5%. A cylinder of diameter d is in-
stalled in the center of the wind tunnel. The vortices pro-
duced behind the cylinder pass through a sound beam
whose distance Bd from the cylinder can be changed.
The angle between the direction of the vortex propagation
and that of the incident and scattered directions is
90' —0/2. With such a geometry we probe the flow field
at length scales corresponding to wave vector p whose
components are

p = —2K sin(8/2) = —4x(vo/c) sin(0/2)

and p, , =0. It is thus simple to probe diferent length
scales in the How by simply changing vo or 0. The
transmitter and the receiver of sound are of the Sell type
and have been constructed as described in [11]. They
both have a 16-cm &16-cm area and respond from 5 to
100 kHz within 10 dB as we have checked using a cali-
brated BK4138 microphone. Two waveguides are placed
in front of the receiver and transmitter to improve respec-
tively the directivity in the detection and the divergency
of the incident beam. The receiver is placed at a distance
D =1 m from the interaction region of the KVS with the
incident wave. The BK4138 microphone is installed at
0=0 to measure the incident wave amplitude. The am-
plitude of the incident sound wave is I'0=1 Pa which cor-
responds to V;„,=0.2 cm/s. With such an arrangement
we are almost in the far-field approximation; the mea-
sured diff'raction angle is about 3 at a frequency of 40
kHz. All experiments were performed with a constant
scattering angle equal to 0=60 . The output of the re-
ceivers are sent to an HP 3565 spectrum analyzer.

In order to probe the characterization length scale b of

the KVS, we have tuned the emitter frequency vo to v]
such that ~p„~ =4'(v~/c)sin(0/2)=2'/b and recorded
the time spectrum of the scattered pressure about v]. In
Fig. 2 we report the modulus of the Fourier transform in
time of P(p, d, v)/Pp measured under the following experi-
mental conditions: d=0. 3 cm, Up=26 cm/s, Bd =0.5
cm, 8=60', and vo=16.5 kHz. In Fig. 2(a), the time
spectrum has been obtained with the cylinder mounted
perpendicular to the plane (r",s). We see that, besides the
peak at vo (mainly due to diffraction effects), there is
another peak at hv= —10.3 Hz. This peak corresponds
exactly to the Strouhal frequency f of the vortex street,
as we have checked with hot-wire measurements. The
sign of the frequency shift is that of the scalar product
p U~ (we have indeed verified that changing p to —p
yields a positive frequency shift). We have varied vo

from 10 to 50 kHz but we did not observe any change in
the peak position at Av= f with—in our 30-mHz reso-
lution. We interpret this result as a Doppler eA'ect

(2xhv=q„U~) where the sampled scattering wave vector
q„ is constant. Indeed, for Reynolds numbers close to
Re, (here Re=52), the KVS is expected to be strictly
periodic [9,10] in space with period b resulting in the ex-
istence of a fundamental mode q ~

=2m/b corresponding to
a resonant frequency (where the scattered amplitude is
maximum) v~ =cq ~/4xsin(8/2) and eventual harmonics
(q„=nq~, v„=nv~). Because of diffraction effects on the
incident sound wave the same q] can be probed within a
range of frequencies vo such that

cq]
4xsin(0/2+ a) 4zcsin(8/2 —a) ' (4)

where a is the maximum angle of diA'raction.
Figure 3 shows the amplitude of the scattered peak as a

function of vo. The symbols with connecting lines corre-
spond to the experimental data. The bold curves are
computed using in Eq. (1) the analytical model for the
KVS in Ref. [9] together with a sin(x)/x shape for the
sound beams (we have independently measured the
diffraction profile). It is possible to show that the
diAraction and the diA'usion of the vortices are responsi-
ble for the broadening and the angular term of Eq. (1)
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FIG. 2. Normalized modulus P(p, v)/Pp(vp) of the Fourier
transform of the scattered pressure with the following experi-
mental conditions: d =0.3 cm, Bq =0.5 cm, v0=16.5 kHz, and
Up=26 cm/s. (a) Cylinder perpendicular to the scattering
plane (r",s). (b) Cylinder parallel to the scattering plane.
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FIG. 3. Normalized modulus P(p, vo f)/Po(vp) as a func-
tion of vo at fixed scattering angle 0=60' for three difI'erent
cylinders. Reynolds number is kept constant: Re=50.
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FIG. 4. Normalized modulus P(tt, vp —f)/Pp(vp) as a func-
tion of Bd with d =0.4 cm, vp=14 kHz, and Up=20. 5 cm/s.

accounts for the asymmetry of the resonance curve. The
experimental value of (iP«, ti/Po)m, . „=10 is in good
agreement with the model. We have repeated the experi-
ment for cylinders of various diameters and found that
the spatial period b between the vortices is equal to 5.4d,
consistent with Ref. [7]. We did not observe a scattered
signal at twice the fundamental value v2 =33 kHz,
q2=4tr/b, due to the compensation effect of the counter-
rotating vortices on each side of the KVS.

In Fig. 2(b) the cylinder is mounted parallel to the
plane (r",s): The peak at —10.3 Hz is significantly re-
duced, in agreement with Eq. (1) which predicts that
only the component of the vorticity perpendicular to the
scattering plane contributes to the scattered pressure.

We have also measured the decay of the amplitude of
P„,. t as a function of Bd for the following experimental
conditions: d=4 mm, Up=20. 5 cm/s, and vo=14 kHz.
Figure 4 shows the relative amplitude of the scattered
peak at Av= f as a function—of the distance Bd in a
log-linear scale. We expect an exp( —p„Bdrl/Ul) decay
law characteristic of the diffusion of vorticity [this behav-
ior is readily obtained from the dynamical equation for
Fourier modes of co, (ll/Bt+ip„Ui+ trav, ) A, (p„t) =0, if
three-dimensional effects are neglected]. The solid line
shows the best linear fit, giving an experimental slope of
0.056 cm ' in agreement with the 0.054-cm ' theoreti-
cal value.

In conclusion, on the basis of our experiment, the in-
teraction of a sound wave and fluid flow is coherent with
a description in terms of sound scattering by the vorticity
field of the Aow in agreement with the calculation of
Lund and Rojas [3]. The scattering wave vector can be
easily adjusted by changing either the scattering angle or
the frequency of the incident wave, providing a con-

venient way to probe the flow at desired length scales.
Because of the frequency limitation of the spectrum
analyzer (51 kHz range), we have not investigated length
scales corresponding to the inner structure of a single vor-
tex in the street. The main limitations to the actual ex-
perimental method are due to diff'raction eA'ects: First,
these limit the spectral resolution as Fig. 3 shows; second,
through the existence of the frequency line at the fre-
quency of the incoming sound as in Fig. 2, they limit the
dynamics of the measurement. We hope to improve both
counts by the construction of larger sound transceivers
and by numerical deconvolution of the data.

We believe that these results could have very useful ap-
plications to the study of turbulent Aows. Because of the
importance of spatial structures in these flows, Q(k, v) is
a quantity as relevant as Q(x, t). If applicable, the
method described here would yield a direct measurement
of the vorticity field in k space.
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