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Boundary-Induced Phase Transitions in Driven DiH'usive Systems
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Steady states of driven lattice gases with open boundaries are investigated. Particles are fed into the
system at one edge, travel under the action of an external field, and leave the system at the opposite
edge. Two types of phase transitions involving nonanalytic changes in the density profiles and the parti-
cle number Auctuation spectra are encountered upon varying the feeding rate and the particle interac-
tions, and associated diverging length scales are identified. The principle governing the transitions is the
tendency of the system to maximize the transported current.
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In the absence of spontaneously broken symmetries the
bulk state of a system in thermal equilibrium is indepen-
dent of the imposed boundary conditions. This need no
longer be true if a nonequilibrium steady state is main-
tained through the action of external forces. The present
paper explores the surprising richness of boundary-
induced bulk effects that can occur in the particular case
of driven diffusive systems, which have been widely stud-
ied as prototypes of nonequilibrium steady states [1-7].
Such systems are characterized by a locally conserved
density, and a uniform external field which sets up a
steady mass current. Roughly speaking, it is this current
which transports information from the boundaries into
the bulk of the system and thereby permits the boundary
conditions in certain regimes to dominate the bulk [4,5].
I will demonstrate that the subtle interplay between
boundary conditions and bulk transport can lead to be-
havior reminiscent of second- and first-order phase transi-
tions even in one-dimensional systems with short-range
interactions. In contrast to previous studies [1-5] which
have concentrated on the nonequilibrium equivalent of
the Ising phase transition, the transitions described here
have no counterpart in equilibrium systems.

Microscopically, a driven diffusive system is modeled
as a lattice gas [1]. Particles occupy the sites of a d-
dimensional lattice with at most one particle per site.
They jump stochastically to vacant nearest-neighbor sites
according to rates which may depend on the local envi-
ronment. The external field biases jump in the positive x
direction. In a homogeneous state of density p e (0, 1)
the field maintains a steady current j(p). For small den-
sities j—p while for p 1 the current vanishes due to
mutual blocking of the particles. Hence in the simplest
case the current has a single maximum j* at some densi-
ty p*, j*=j(p*).

Consider now a system of finite extension L in the x
direction and infinite extension in the other d —

1 direc-
tions. The boundaries are in contact with particle reser-
voirs [8] of density po at x =0, and zero density at x =L,
i.e., particles are injected at x =0 and leave the system at
x =L. This induces a density gradient which is expected
to generate an excess current j,„ in addition to the sys-
tematic current j(p). Stationarity requires the total

current to be constant everywhere, j,„+j(p) =J. I claim
that the total current is always maximized, in the sense
that in the limit I.
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FIG. 1. Density profiles of one-dimensional driven lattice
gases. The uniform profiles correspond to po= I, P=0 (top)
and p0=0. 19, P= I (bottom). The nonuniform profile corre-
sponds to p0=0.8, P =~. In each case the density was averaged
over 10" attempted jumps per site. The dashed line is at p = —, ;

the dotted lines indicate the predicted plateau densities pl 2 at
p =co

J= max j(p) .
P & [O,PO)

To see this, we anticipate the general shape of the density
profile, to be discussed in more detail below. The profile
is monotonously decreasing, with a plateau at some densi-
ty p C [O,po] and appreciable density variations only in

the boundary regions which occupy a vanishing fraction
of the system for large L (see Fig. 1). Hence j„„can
be neglected in the bulk and J=j(p). Suppose that
j(p') )j(p) for some p' C (O, po). The profile must pass
through the value p' in one of the boundary regions where

j,„&0. The total current at this point therefore would
exceed J. This violates stationarity, whence (I ) is estab-
lished. A numerical example of the predicted behavior is
shown in Fig. 2. The simulations were carried out for a
one-dimensional lattice gas with hard-core interactions
[7] and jumps only in the positive x direction [9]. In this
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FIG. 2. Spatially averaged density p and current J as a func-
tion of the boundary density po for the hard-core exclusion
model (P=0). Each data point is an average over 125000 at-
tempts per site and the system size is I =1000. The solid lines
are the predictions of Eq. (1).

case j (p) =p(1 —p), so j*= —,
' and p* =

& . Note that
(1) implies a nonanalytic variation of J and p when po
passes through p*. This constitutes the first type of phase
transition found in these systems. We shall see below
that the two "phases" po& p* and po(p* are qualita-
tively different, and that a diverging length scale can be
associated with the transition.

The purpose of the previous discussion was to illustrate
that the occurrence of a transition at po=p* is largely in-
dependent of the form of the excess current j,„. To
proceed, we postulate a diffusive excess current, j,„

Dt)p/8x. The —stationarity condition then becomes
an ordinary difl'erential equation [5] from which the
profile is readily computed,

D P =j (p) —J, p(0) =po, p(L) =0.dp
dx

(2)

Note that the value of J is determined through the
boundary conditions. In the limit L ~ (1) is recov-
ered. In the following I consider only the infinite system.
For po & p the density profile approaches the plateau at
p=p* as a power law [10], p(x) —p*=(D/x)'7"
where n is the order of the maximum of j(p), j*
—j(p) —(p —p*)". In the generic case n =2 the profile
decays as 1/x. The asymptotic decay sets in beyond a
crossover length scale g, which is obtained by equating
the power law to po

—p*, (,=D(po —p*) " ' . F«po(p* the bulk density is equal to the boundary density at
x =0. Corning from the boundary at x =L, the profile
approaches its bulk value exponentially on a length scale
g =D/c, where c =j'(po) & 0. It will become clear later
that c is a characteristic drift velocity for the density fluc-
tuations. On approaching the transition at po=p*,
diverges as (p* —po) " ' . Hence the transition occurs
between a phase with a characteristic length scale ( and a
scale-invariant power-law phase. Preliminary investiga-
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FIG. 3. Density profiles scaled according to (3) with p* = —, .

The solid curves correspond to P =0 and po=1, 0.7, 0.6, and
0.55; the dashed curve corresponds to P =P, and po =1. System
size and statistics are as in Fig. l.

tions of spatial correlations [11] indicate that they behave
qualitatively similar to the density profile. We note that
( and the crossover scale g, , diverge with the same ex-
ponent as po p*.

Up to now we have neglected the effects of fluctuations
on the difl'usion constant D. This is justified only in di-
mensions d ~ 3. For d ~ 2, the leading quadratic non-
linearity in the expansion of j(p) around the bulk density
is a relevant perturbation which leads to superdiffusive
spreading of density fluctuations [7,8], and hence to a
scale-dependent diffusion constant. In one dimension the
exact scaling form for the fluctuations implies [7,8] that
D —(length)' . It is then natural to try to incorporate
fluctuations by simply replacing D by the square root of
some appropriate length scale in the expressions derived
from the "mean-field" equation (2). Specifically, the
density profile in the generic case n =2 is then predicted
to decay as x '7 and the length scales ( and (, diverge
as ipo

—p*i on approaching the transition. For po
& p this implies the scaling form

p(x) —p* =(po p*)F( —x( po
—p*)'),

where F(0) =1 and F(x)—x '7 for x ~. Surpris-
ingly, this simple minded ansatz is well borne out by the
simulation results depicted in Fig. 3. In two dimensions
the effect of fluctuations is marginal [7,8], and is expect-
ed to lead to logarithmic corrections to the mean-field
profiles. In that sense d =2 is the upper critical dimen-
sion of the problem. As a consequence of the fluctua-
tions, the excess current in a finite one-dimensional sys-
tem is of the order [12] 1/L for po & p* and the bulk den-
sity gradient is O(L 7 ) rather than O(1/L ) as predict-
ed by (2). For po (p* these quantities are exponentially
small in L. Numerical results confirming this will be
presented elsewhere.

A second type of phase transition is associated with
qualitative changes in the current-density relation j(p).
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Consider a one-dimensional lattice gas with repulsive
nearest-neighbor interactions [13]. As before, the motion
of particles is restricted to nearest-neighbor hops in the
positive x direction, but jumps which increase the number
of pairs of occupied nearest-neighbor sites are suppressed
by an exponential factor e P, where P plays the role of
reduced inverse temperature. Hence for large P the
current at half filling, p= —,', will be strongly suppressed,
while away from p =

2 a finite current can flow without

changing the number of nearest-neighbor pairs. Since
obviously j(0) =j(1)=0 for all p, this implies that the
current develops a double-hump structure [14] when P
exceeds some critical value P„with two degenerate maxi-
ma at densities p~(P) and pz(P), p~ & pz. In the limit

P ~ the calculation of the current can be related to the
one-dimensional dimer problem [15],which yields the ex-
act result limp p~ z(P) =

z
~ (J2 —1)/2.

Using (1) and (2) it follows that a current-density rela-
tion with two degenerate maxima leads to a density
profile with two plateaux at densities p] and pq separated
by an interface, provided that po& p~ (Fig. 1). The posi-
tion of the interface is determined by the ratio
j"(p~)/j"(pz). For symmetric maxima the interface is lo-
cated at x =L/2 on average. Within the mean-field
description (2) the interface width is proportional to D;
hence it is expected to be roughened by fluctuations in di-
mensions d ~ 2. As po is lowered past p] a transition
occurs to a profile with a single plateau at density pz.
This transition is of first order in the sense that the spa-
tially averaged density jumps from p= 2 to p=p2 at
po pi.

The resulting phase diagram in the (po, I/P) plane is
summarized in Fig. 4. The diagram was obtained by us-

ing a specific choice of jump rates [1] which permits the
current-density relation to be computed exactly for all
values of P [16]. Increasing P at fixed po & —,

' the phase
separation into two plateaux occurs at P, =2ln3. The
transition is continuous and p~

—
pz —(P —P, )' as in

classical Landau theory. At the transition point the
current has a maximum of order n =4, and (2) predicts a
x ' decay of the density profile. Since the relevant
quadratic nonlinearity [7,8] is absent at P=P„ the fluc-
tuations are not expected to change this behavior, in

agreement with the numerical results depicted in Fig. 3.
Close to the transition, P~P„ the profile crosses over
from x '~ to x '~ decay on a length scale g, -X
where A, =j"( z ) —p, —p.

It is worth pointing out that, in the particular case
shown in Fig. 4, the total current J at po& p] decreases
only slightly from J= —„' at P=P, to J=(J2—1) /2 at
P=~ (without any discernible feature at P, ) although
the current at half filling becomes exponentially small in

P. This illustrates rather strikingly how the current max-
imization principle (1) drives the phase separation: The
nonuniform density profile allows the system to maintain
a large current despite the presence of interactions which
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FIG. 4. Phase diagram for the one-dimensional lattice gas
with repulsive interactions. The solid and dotted lines denote
the two types of continuous transitions and the dashed line
denotes a discontinuous transition.

tend to suppress the particle motion. Possibly a similar
mechanism could be invoked to explain the patterns ob-
served recently in simulations of a two-dimensional lattice
gas with attractive interactions and open boundaries [5].
Indeed a significant increase in the current, as compared
to the system with periodic boundary conditions, was ob-
served in these simulations.

Having elucidated the behavior of the average density
profile in various regimes, the natural next step is to con-
sider spatiotemporal correlations. In general, this is a
difficult task, since it involves expanding around a nonun-
iform profile which itself is not explicitly known [11].
Here I concentrate on the most easily accessible quantity,
the frequency spectrum of the particle number Auctua-
tions [17], and I assume a single-humped current-density
relation. Separating the Auctuations from the average
density profile through p=(p)+P, (p) =0, and approxi-
mating the average profile by a constant, (p) =p, we ob-
tain a fluctuating Burgers equation [7,8] for p with a drift
term c Bp/r)x, c =j'(p), and a nonlinearity A, p t)p/t)x,
1, =j"(p). We ignore the boundary conditions for the
Auctuations and treat the finite system as a slab of an
infinitely extended system [18]. The particle number
fluctuations are then readily calculated and we find a
spectrum (~N(ro)~ )—co for L ~. For c~0 the ex-
ponent a =2, while for c =0 the value depends on dimen-
sion and the presence of the nonlinearity. For X~0,
a= & in d ~ 2 with logarithmic corrections in d=2, and
[7] a=

& in d=1; for %, =0, a= —, in all dimensions.
This result once more illustrates the diA'erent nature of
the phases po) p and po& p*. In the latter case c~0,
which not only provides a length scale j=D/c for the de-
cay of correlations, but also leads to a linear drift of den-
sity fluctuations through the system which generates trivi-
al I/co number fluctuations. In the power-law phase,
c =0 and the number Auctuation spectrum reflects the
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internal (diffusive or superdiffusive) dynamics of the sys-
tern. The predictions for a have been verified by simula-
tions in one dimension for P =0 and P =P, (where k =0).
Note that generically the condition c =0 would have to be
achieved by fine tuning of parameters. The fact that it is
maintained by the boundary conditions over a finite range
of boundary densities po may thus be regarded [19] as an
example of self-organized criticality [20].

In conclusion, I have presented a detailed study of
driven diAusive systems with open boundaries, and
demonstrated dramatic boundary eA'ects which are quite
unexpected from the point of view of equilibrium statisti-
cal mechanics. It should be noted that the boundary con-
ditions employed in this work are rather more realistic
physically than the ring geometry used in most previous
studies [1-4], thus the effects described here should be
accessible to experiments. Theoretically, it would be of
interest to explore how the boundary-induced phase tran-
sitions can be embedded into an equilibrium context us-
ing the mapping [21] of one-dimensional diffusive particle
systems onto two-dimensional vertex models. Finally, I
hope that my results will prove to be useful in future in-
vestigations of other nonequilibrium stationary states in

which boundary conditions play a prominent role
[5,10,17,20].
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