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Asymptotic Results for the Random Sequential Addition of Unoriented Objects
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Asymptotic kinetics for random sequential addition of unoriented nonspherical objects is characterized
by an algebraic time dependence. By studying 1D systems, we show that the exponents describing the
random sequential addition of objects with and without proper area are not simply related: %hereas the
asymptotic behavior for rectangles follows the expected t ' law, the long-time kinetics for infinitely

thin line segments is governed by a nontrivial, irrational, exponent (t ' ') which results from a competi-
tion between creation and destruction of targets in the asymptotic regime.

PACS numbers: 68.10.Jy, 02.50.+s, 82.65.—i

Random sequential addition (RSA) is a model for ir-
reversible adsorption of filling space that has attracted
much recent attention [1]. Although conceptually simple
(objects are placed sequentially and randomly, subject to
the condition that they cannot overlap and that, once in-
serted, they cannot move), RSA models display a rich be-
havior, the study of which usually requires extensive com-
puter simulations. In the last two years, the effort has
been directed towards generalizing the basic model [2-6],
in particular by considering the RSA of nonspherical ob-
jects added with random orientations [3-61.

An interesting feature of RSA models for objects with
a nonzero proper area or volume is that the system
reaches a jamming limit at a saturation density which is
less than random close packing and that the asymptotic
approach to this limit is usually described by an algebraic
time dependence

p p(t) —t—
where p is the number density. Equation (1) is valid for
objects added with random orientations and n is then

equal to the number of degrees of freedom per object
[3,6]. Although no definite proof of Eq. (1) has been

given, analytical and numerical arguments have been
presented that strongly support its validity [3-6]. Note
that for isotropic objects, n is equal to the number of di-
mensions and Eq. (1) reduces to the usual Feder's law

[7,sl.
In recent studies on very elongated objects in two di-

mensions, it was also realized that the kinetics at inter-
mediate times was similar to that of infinitely thin objects
(line segments or "needles" ) [5]. For the latter, there is

no jamming limit and the number density keeps increas-
ing:

p(t) —t .

Sherwood [4] recently suggested, by transposing the ar-
guments used to derive Eq. (1), that the exponents in

Eqs. (1) and (2) differ simply by their sign (e.g. , in two
dimensions where n =3, a = —,

' ) and he claimed that the
t ' ' power law was numerically verified for needles in two

dimensions. However, a subsequent simulation of the
same system by Ziff and Vigil [5] showed that the ex-
ponent a is larger than —, and close to 0.38. No argu-
ment has yet been presented to explain this discrepancy,
which is unfortunate since connecting the intermediate-
time regime, described by Eq. (2), with the asymptotic
regime, described by Eq. (1), is a key to a proper descrip-
tion of the RSA of very elongated objects.

To resolve the question, we have studied analytically
and numerically the simplest relevant one-dimension-
al systems: the RSA of infinitely thin line segments
(needles) and of rectangles, added with random orienta-
tions and no overlap, and such that their centers are
placed randomly onto a line. We show that, whereas the
asymptotic approach to the jamming limit for rectangles
is described, as expected, by Eq. (I) with n=2, the
long time kinetics-for needles is governed by Eq (2) with.
an irrational exponent, a =J2 —l, which is nontrivially
related to the number of degrees offreedom. This break-
down of Sherwood's prediction comes from the competi-
tion between creation and destruction of intervals that is

present even in the asymptotic regime. To derive the ex-
ponent a, we show that in the long-time regime the RSA
of needles is reducible to a simpler model describing an

RSA of points onto a line subject to an additional linear
condition. The analytical results are well supported by
the computer simulation data which are very accurate for
these one-dimensional problems.

We introduce first the simpler model. Connection with

the RSA of needles will be made later. We consider the
RSA of points onto a segment of line characterized by a
length L and by an additional property which we call its
weight and set equal to L. Two neighboring points on the
segment define an interval: When a point is added any-
where within an interval, the interval is destroyed but, at
the same time, two smaller intervals are created. At each
step of the process, every interval is characterized by its
length h and an additional variable, the weight w, which
is introduced as follows. The points are dropped random-

ly, one at a time, onto the segment. However, to be ac-
cepted, the deposition of a point must satisfy an addition-
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tL lL
+2)„dh' I

dw'G(h', w', t). (3)

The number density of points on the line at time t is re-
lated to G (h, w, t ) by

(4)p(t) =, dh„, dw G(h, w, t).
More generally, one can introduce the moments of the
distribution function G(h, w, t) as

eL rL
M())„p,t) =„i dh j

dw h'w "G(h, w, t), (5)

where k and p are real numbers larger than —l. We are
interested in the long-time behavior of M(), p, t), espe-
cially of p{t)=M(0, 0, t), and we assume that this behav-
ior is described by an algebraic time dependence,
M(k, p, t) —a(A, ,p)t '" . By combining Eqs. (5) and
(3), we derive the moment equation,

(didt)M(~, p, t) =[2/() +1)(p+1)—1]

xM(k+ l,p+ 1,t),
and, by inserting the assumed time dependence, we obtain
a set of finite-diA'erence equations to be satisfied by the
exponent b(k, p):

b(k +1, p+1) =b(),p) —1,

b ~+1 (7)

Equation (7) expresses the property that all moments
M(A, ,p, t) characterized by the relation ()),+1){p+1) =2
are independent of time: the fact that, in addition to the
expected relations associated with the conservation of the
total length (A, =1, p =0) and total weight (A =0,p =1),
there is an infinity of sum rules which results from the
competition between creation and destruction of intervals.

Assuming now that b(X, A, ) is a linear funci. ion of A. [a

al condition: A random number, g, is chosen between 0
and I (from a uniform distribution) and the deposition is
definitely accepted only if g is smaller than the weight m

of the interval in which the point has been dropped. In
case of acceptance, a weight is assigned to the newly
created intervals; it is set equal to rl for the interval that
is left of the accepted point and to ~ —

g for the other
one. Denoting then G (h, w, t ) the distribution function
for intervals of length h and weight ~ at time t, it is
straightforward to derive the equation governing its time
evolution:

8G(h, w, t)
h G(h )

) I ) )
I

) I I l
[

) I I l
I

10 15

FIG. l. Moments M(k. ,p, t) of the two-variable model [Eqs.
(3)-(5)] as a function of time on a ln-ln plot. The moments are
normalized such that M(), ,p, t = l) = l. The values of the ex-
ponent b(k, p) obtained from a least-squares fit (dashed lines)
are displayed on the figure and are in excellent agreement with
those predicted by Eq. (8): b(0, 0) =J2 —l, b( —,', —,

' ) =0,
b(2, 0) =J3 —2, b(l, 1 ) =J2 —2. The time t is defined by
counting the cumulative number Qf attempts.

p(t) =M(0, 0, t) -t (9)
The above predictions are independent of the choice of L
and are very well supported by our computer simulation
results: Our numerical value for the exponent b(0,0)
of Eq. (9) is 0.415+'0.005; other results are shown in

Fig. 1.
We now return to the RSA of unoriented line segments

(needles) onto a line. The main reason to study one-
dimensional systems is that one can usually derive the
equations describing the kinetics of the process in a closed
form. Even though the present RSA process involves two
degrees of freedom per object (the position of the center
on the line and an angle measuring the orientation of the
needle relative to the line), one can still obtain an exact
equation for the time evolution of G(h, 0, 0', t), the distri-
bution function for intervals of length h that are bounded
by a needle of orientation 0 (on the left-hand side) and a
needle of orientation 0' (on the right-hand side):

property which can be deduced from Eq. (3) by scaling
arguments and which we have numerically verified] leads
to a unique solution for the preceding set of equations:

b (&,p ) = —,
' [[(k—p ) '+ 8] ' ' —()).+p+ 2)] . (8)

This simple two-variable model thus leads to a variety of
nontrivial power-law exponents for the long-time kinetics;
the number density, for instance, goes as

eG(h, 0, 0', t)
dt „,

l
d0"[h —8(0, 0 ) — ( )5"0, )0] (Gh, , 0t0)

+„,d0 „'„„,„,dh'G(h', 0",0',t)+„,„,, dh'G(h', 0,0",t)
1

(10)
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where h ~ 8'(0, 0') and 0 ~ 0, 0'~ ir; I, the length of the
segment of line, is much larger than the length of a nee-
dle (taken as unity), and

~sin(0 —0')
~

2max(sinO, sinO' )

is the shortest distance between the centers of two neigh-
boring needles with orientations 0 and 0' (O=ir/2 corre-
sponds to a situation in which the needle is perpendicular
to the line). The number density of needles at time t is
related to G(h, 0, 0', t) by

p(r) = dO dO', dhG(h, 0, 0', r).

aG(i, S, O., r )
sinO, (—i ' a') G(—i, a, O, , r )

Connection to the simpler model presented earlier can be
made by noting that for long enough times, and aside
from a vanishingly small number of situations, the length,
h, of any interval between needles and the diAerence,
0 —0', between the orientations of any two neighboring
needles decrease to zero: h 0 and 0 —0' 0 when
t +~. In this long-time regime, the configuration
formed by the needles on the line is made of a very large
number of microdomains: Every microdomain contains a
very large number of needles, all very close to each other
and nearly parallel, and can be characterized by a mean
orientation, Oo. The exact equation, Eq. (10), can then be
replaced by an approximate one that describes the pro-
cess in each microdomain separately and is only valid
asymptotically. After some manipulations, we find

~H,
+4sinOo dh', , d8'G(h', 6', Oo, t), t +~, (i3)

where H, is an upper . cutoff length, the value of which is
irrelevant for determining the long-time kinetics, and in very good agreement with our computer simulation
G(h, 8, 0p, r) is the distribution function for intervals of data.
length h between two needles characterized by a shortest Finally, we discuss the RSA of unoriented rectangles
distance of approach 8 in a microdomain of mean orien- (having a large but finite aspect ratio) whose center is re-
tation 0o. stricted to fall onto a line. The fact that the objects have

The original equation, Eq. (10), can be interpreted as now a nonzero thickness introduces a fundamental dif-
describing an RSA of points with a nonlinear condition, ference in the long-time kinetics of the filling process:
expressed by means of Eq. (11). Equation (13) repre- The system reaches a jamming limit and the approach to
sents then a linearized version of Eq. (10), in which the this limit can be described as an irreversible process of
number of relevant degrees of freedom is reduced to two: destruction of targets with no competing creation process
h and 6'. [3,6,8]; a target is defined as a small interval between two

By using the change of variables

(h, 8)—(x =(sinOo) ' '(h —6), y =(sinOo) 'i'(h+8))

and introducing g(x,y, t) as the interval distribution
function averaged over all microdomains, we can rewrite
Eq. (13) as

r)g(x, y, r ) = —xyg(x, y, t )
I

I'H,', +H,'+2 „dx' dy'g (x',y', i), (i4)

where H,'is an (irrelevant) upp. er cutoff length: 0~x,y
H,'. The above equation is exactly similar to Eq. (3)

and the full relation to the previously studied model is es-
tablished by means of the following asymptotic expression
for the number density of needles: In(t)

10
I

15

Hc ~ Hv'

p(r) —„, 'dxJ, 'dy g(x,y, r), r —+ (is)
We can now apply the results derived earlier and we con-
clude that the long-time behavior of the number density
of needles p(t) has an algebraic dependence character-
ized by a nontrivial exponent equal to J2 —1: Thisis the
first irrational exponent ever found for the kinetics of an
RSA process. As shown in Fig. 2, the analytical result is

FIG. 2. Number density of needles on the line as a function
of reduced time (ln ln plot). Note that, as for the two-
dimensional system [5,10], the curve approaches asymptotically
a straight line with a positive curvature. The exponent ob-
tained from a least-squares fit over the 27000 last needle inser-
tions is then slightly less than predicted: a =0.405. The time t
and the density p are defined in reduced units by counting the
cumulative number of attempts and the number of needles, re-
spectively, and by multiplying by the needle length.
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rectangles which allows the insertion of one and only one additional rectangle. For elongated rectangles and times long
enough (t ) t, ), the configuration formed by the rectangles on the line is made of small domains characterized by a
mean orientation, 00, and the rate equation governing the filling of the targets in each domain can be expressed as

66 (h +2e(singo) ', B, Oo, t ) ~ z= —sinOo(h —6 )G(h+2e(sinOo) ', 6, 8o, t), h ~ 6', t ~ t, ,
t

(16)

where e is the width of a rectangle (the length is taken as unity), h+e(sin0o) is the length of the empty interval be-
tween the two rectangles defining the target, 6 is the shortest distance of approach characterizing the orientations of
these two rectangles, and G is the target distribution function. The diAerence between the number density of rectangles
at the jamming limit and that at time t (t ~ t, ) is given by a sum over all targets which remain empty:

rH, ~h
p( ) —p(t) -4„dIt d8 dgo6(h+2e(sinOo) ', a, go, r, )exp[ —sin8o(h' —8')(r —t, )] .

Equations (16) and (17) can be compared with Eqs.
(13)-(15). As for the RSA of needles, only two vari-

ables, h and 6', which are correlated and both decrease to
zero with increasing time, are relevant to determine the
long-time kinetics. However, the absence of any creation
process for the targets introduces a major simplification.

The additional ingredient which is needed to derive the
asymptotic form of Eq. (17) is the assumption that in

every domain at time t, the total number of targets
characterized by a length h approaches a limit which is

diAerent from zero when h 0. By using this latter as-
sumption and introducing a new variable k such that
6=hsing. , we then obtain easily the expected t ' law

for the asymptotic behavior of p(~) p(t) (the vali—dity
of this result, and of the above assumption, has been nu-

merically verified for rectangles with an aspect ratio
equal to 10 [9]). This lends support to the conclusion
that the nontrivial nature of the exponent for infinite-

ly thin needles is not a peculiar feature of the one-
dimensional system, rather, it results from the competi-
tion between creation and destruction of targets that is

present even in the asymptotic regime; a similar result is

thus expected for needles in two dimensions [10].
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